Thursday, August 11, 2022
No menu items!
HomeChemistryThe chemistry of snake venom and its medicinal potential

The chemistry of snake venom and its medicinal potential

[ad_1]

  • Holford, M., Daly, M., King, G. F. & Norton, R. S. Venoms to the rescue. Science 361, 842–844 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A. & Fry, B. G. Advanced cocktails: the evolutionary novelty of venoms. Developments Ecol. Evol. 28, 219–229 (2013). A assessment of the pure historical past of venoms and mechanisms of venom evolution.

    PubMed 
    Article 

    Google Scholar
     

  • King, G. F. Venoms as a platform for human medicine: translating toxins into therapeutics. Professional Opin. Biol. Ther. 11, 1469–1484 (2011). This assessment covers all levels of the event of medication primarily based on animal venoms.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Herzig, V. et al. Animal toxins — nature’s evolutionary-refined toolkit for fundamental analysis and drug discovery. Biochem. Pharmacol. 181, 114096 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pineda, S. S. et al. Structural venomics reveals evolution of a fancy venom by duplication and diversification of an historic peptide-encoding gene. Proc. Natl Acad. Sci. USA 117, 11399–11408 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cid-Uribe, J. I., Veytia-Bucheli, J. I., Romero-Gutierrez, T., Ortiz, E. & Possani, L. D. Scorpion venomics: a 2019 overview. Professional Rev. Proteom. 17, 67–83 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Tasoulis, T. & Isbister, G. Ok. A assessment and database of snake venom proteomes. Toxins 9, 290 (2017). An evaluation of the composition and variety of snake venom.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Casewell, N. R. et al. Medically vital variations in snake venom composition are dictated by distinct postgenomic mechanisms. Proc. Natl Acad. Sci. USA 111, 9205–9210 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Massey, D. J. et al. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from southern Arizona. J. Proteom. 75, 2576–87 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Casewell, N. R., Jackson, T. N. W., Laustsen, A. H. & Sunagar, Ok. Causes and penalties of snake venom variation. Developments Pharmacol. Sci. 41, 570–581 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Durban, J. et al. Built-in venomics and venom gland transcriptome evaluation of juvenile and grownup Mexican rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus revealed miRNA-modulated ontogenetic shifts. J. Proteome Res. 16, 3370–3390 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pla, D. et al. Phylovenomics of Daboia russelii throughout the Indian subcontinent. Bioactivities and comparative in vivo neutralization and in vitro third-generation antivenomics of antivenoms towards venoms from India, Bangladesh and Sri Lanka. J. Proteom. 207, 103443 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Senji Laxme, R. R. et al. Past the ‘huge 4’: venom profiling of the medically vital but uncared for Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl. Trop. Dis. 13, e0007899 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chanda, A., Kalita, B., Patra, A., Senevirathne, W. D. S. T. & Mukherjee, A. Ok. Proteomic evaluation and antivenomics examine of Western India Naja naja venom: correlation between venom composition and scientific manifestations of cobra chunk on this area. Professional Rev. Proteom. 16, 171–184 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tasoulis, T., Pukala, T. L. & Isbister, G. Ok. Investigating toxin range and abundance in snake venom proteomes. Entrance. Pharmacol. (2022). A assessment of the proteomic strategies used to separate and quantify snake venom toxins, evaluating their deserves and limitations.

  • Editorial. Snake-bite envenoming: a precedence uncared for tropical illness. Lancet 390, 2 (2017).


    Google Scholar
     

  • Gutierrez, J. M. et al. Snakebite envenoming. Nat. Rev. Dis. Primers 3, 17063 (2017). A assessment on the pathophysiology and therapy of snakebite envenoming.

    PubMed 
    Article 

    Google Scholar
     

  • Williams, D. The International Snake Chew Initiative: an antidote for snake chunk. Lancet 375, 89–91 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Kasturiratne, A. et al. The worldwide burden of snakebite: a literature evaluation and modelling primarily based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).

    Article 

    Google Scholar
     

  • McDermott, A. Venom again in vogue as a wellspring for drug candidates. Proc. Natl Acad. Sci. USA 117, 10100–10104 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bordon, Ok. et al. From animal poisons and venoms to medicines: achievements, challenges and views in drug discovery. Entrance. Pharmacol. 11, 1132 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Almeida, J. R. R. et al. Snake venom peptides and low mass proteins: molecular instruments and therapeutic brokers. Curr. Med. Chem. 24, 3254–3282 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fry, B. G. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic evaluation of toxin sequences and associated physique proteins. Genome Res. 15, 403–420 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ojeda, P. G. et al. Computational research of snake venom toxins. Toxins 10, 8 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Calvete, J. J., Sanz, L., Angulo, Y., Lomonte, B. & Gutiérrez, J. M. Venoms, venomics, antivenomics. FEBS Lett. 583, 1736–1743 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Modahl, C. M., Brahma, R. Ok., Koh, C. Y., Shioi, N. & Kini, R. M. Omics applied sciences for profiling toxin range and evolution in snake venom: impacts on the invention of therapeutic and diagnostic brokers. Annu. Rev. Anim. Biosci. 8, 91–116 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • The Uniprot Consortium. UniProt: the common protein knowledgebase in 2021. Nucleic Acids Res. 49, 480–489 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Simoes-Silva, R. et al. Snake venom, a pure library of latest potential therapeutic molecules: challenges and present views. Curr. Pharm. Biotechnol. 19, 308–335 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Calvete, J. J. Subsequent-generation snake venomics: protein-locus decision by venom proteome decomplexation. Professional Rev. Proteom. 11, 315–329 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Brahma, R. Ok., McCleary, R. J. R., Kini, R. M. & Doley, R. Venom gland transcriptomics for figuring out, cataloging, and characterizing venom proteins in snakes. Toxicon 93, 1–10 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, L. Comparability of next-generation sequencing methods. J. Biomed. Biotechnol. 2012, 251364 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutiérrez, J. M. & Lomonte, B. Phospholipases A2: unveiling the secrets and techniques of a functionally versatile group of snake venom toxins. Toxicon 62, 27–39 (2013). A assessment of the construction and performance of the central PLA2 toxin household.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V. & Kokotos, G. Phospholipase A2 enzymes: bodily construction, organic operate, illness implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 111, 6130–6185 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kang, T. S. et al. Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 278, 4544–4576 (2011). A paper specializing in the construction and response mechanisms of essentially the most distinguished snake venom enzymatic toxins.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schaloske, R. H. & Dennis, E. A. The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta 1761, 1246–59 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ferraz, C. R. et al. Multifunctional toxins in snake venoms and therapeutic implications: from ache to hemorrhage and necrosis. Entrance. Ecol. Evol. 7, 218 (2019).

    Article 

    Google Scholar
     

  • Kini, R. M. & Koh, C. Y. Snake venom three-finger toxins and their potential in drug improvement concentrating on cardiovascular ailments. Biochem. Pharmacol. 181, 114105 (2020). A assessment of the household of 3FTxs and their potential medicinal purposes for cardiovascular ailments.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fry, B. G. et al. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J. Mol. Evol. 57, 110–129 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kini, R. M. & Doley, R. Construction, operate and evolution of three-finger toxins: mini proteins with a number of targets. Toxicon 56, 855–867 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Olaoba, O. T., Karina dos Santos, P., Selistre-de-Araujo, H. S. & Ferreira de Souza, D. H. Snake venom metalloproteinases (SVMPs): a construction–operate replace. Toxicon X 7, 100052 (2020). A assessment of the big and sophisticated household of SVMP toxins.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gutiérrez, J. M., Escalante, T., Rucavado, A. & Herrera, C. Hemorrhage brought on by snake venom metalloproteinases: a journey of discovery and understanding. Toxins 8, 93 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Takeda, S. ADAM and ADAMTS household proteins and snake venom metalloproteinases: a structural overview. Toxins 8, 155 (2016).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ullah, A. et al. Thrombin-like enzymes from snake venom: structural characterization and mechanism of motion. Int. J. Biol. Macromol. 114, 788–811 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hiu, J. J. & Yap, M. Ok. Ok. Cytotoxicity of snake venom enzymatic toxins: phospholipase A(2) and l-amino acid oxidase. Biochem. Soc. Trans. 48, 719–731 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tan, Ok. Ok., Bay, B. H. & Gopalakrishnakone, P. l-amino acid oxidase from snake venom and its anticancer potential. Toxicon 144, 7–13 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paloschi, M. V. An replace on potential molecular mechanisms underlying the actions of snake venom l-amino acid oxidases (LAAOs). Curr. Med. Chem. 25, 2520–2530 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ullah, A. Construction–operate research and mechanism of motion of snake venom l-amino acid oxidases. Entrance. Pharmacol. 11, 110 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Inagaki, H. in Snake Venoms (eds Gopalakrishnakone, P., Inagaki, H., Vogel, C.-V., Mukherjee, A. Ok. & Rashed Rahmy, T.) (Springer, 2017).

  • Markland, F. S. & Swenson, S. Snake venom metalloproteinases. Toxicon 62, 3–18 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Serrano, S. M. & Maroun, R. C. Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 45, 1115–1132 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Serrano, S. M. The lengthy highway of analysis on snake venom serine proteinases. Toxicon 62, 19–26 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arlinghaus, F. T. & Eble, J. A. C-type lectin-like proteins from snake venoms. Toxicon 60, 512–519 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morita, T. Buildings and features of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating actions. Toxicon 45, 1099–1114 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lu, Q., Navdaev, A., Clemetson, J. M. & Clemetson, Ok. J. Snake venom C-type lectins interacting with platelet receptors. Construction–operate relationships and results on haemostasis. Toxicon 45, 1089–1098 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vink, S. Natriuretic peptide drug leads from snake venom. Toxicon 59, 434–445 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sridharan, S., Kini, R. M. & Richards, A. M. Venom natriuretic peptides information the design of coronary heart failure therapeutics. Pharmacol. Res. 155, 104687 (2020). This assessment examines the construction–operate relationships of venom natriuretic peptides, and discusses peptide engineering methods for creating therapeutic natriuretic peptide analogues.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Munawar, A. Snake venom peptides: instruments of biodiscovery. Toxins 10, 474 (2018).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Laustsen, A. H., Lomonte, B., Lohse, B., Fernández, J. & Gutiérrez, J. M. Unveiling the character of black mamba (Dendroaspis polylepis) venom by venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom improvement. J. Proteom. 119, 126–142 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Damm, M., Hempel, B. F., Nalbantsoy, A. & Süssmuth, R. D. Complete snake venomics of the Okinawa Habu pit viper, Protobothrops flavoviridis, by complementary mass spectrometry-guided approaches. Molecules 23, 1893 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Coronado, M. A. et al. Construction of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. Acta Crystallogr. D 69, 1958–1964 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Falcao, C. B. & Radis-Baptista, G. Crotamine and crotalicidin, membrane lively peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally-minimized fragments for purposes in drugs and biotechnology. Peptides 126, 170234 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Slotta, Ok. H. & Fraenkel-Conrat, H. Two lively proteins from rattlesnake venom. Nature 13, 213–213 (1938).

    Article 

    Google Scholar
     

  • Berg, O. G., Gelb, M. H., Tsai, M. D. & Jain, M. Ok. Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem. Rev. 101, 2613–54 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tsai, Y. C., Yu, B. Z., Wang, Y. Z., Chen, J. & Jain, M. Ok. Desolvation map of the i-face of phospholipase A2. Biochim. Biophys. Acta 1758, 653–665 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bahnson, B. J. Construction, operate and interfacial allosterism in phospholipase A2: perception from the anion-assisted dimer. Arch. Biochem. Biophys. 433, 96–106 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Scott, D. L. et al. Interfacial catalysis: the mechanism of phospholipase A2. Science 250, 1541–1546 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sérgio, S., Ramos, M. J., Lim, C. & Fernandes, P. A. Relationship between enzyme/substrate properties and enzyme effectivity in hydrolases. ACS Catal. 5, 5877–5887 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sousa, S. F. et al. Activation free power, substrate binding free power, and enzyme effectivity fall in a really slender vary of values for many enzymes. ACS Catal. 10, 8444–8453 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Resende, L. M. et al. Structural, enzymatic and pharmacological profiles of AplTX-II — a fundamental sPLA2 (D49) remoted from the Agkistrodon piscivorus leucostoma snake venom. Int. J. Biol. Macromol. 175, 572–585 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lomonte, B. & Rangel, J. Snake venom Lys49 myotoxins: from phospholipases A(2) to non-enzymatic membrane disruptors. Toxicon 60, 520–30 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fernández, J. et al. Muscle phospholipid hydrolysis by Bothrops asper Asp49 and Lys49 phospholipase A2 myotoxins — distinct mechanisms of motion. FEBS J. 280, 3878–3886 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Almeida, J. R. et al. CoaTx-II, a brand new dimeric Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom with bactericidal potential: insights into its construction and organic roles. Toxicon 120, 147–58 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Almeida, J. R. et al. Harnessing snake venom phospholipases A(2) to novel approaches for overcoming antibiotic resistance. Drug Dev. Res. 80, 68–85 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Almeida, J. R. et al. A novel artificial peptide impressed on Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom lively towards multidrug-resistant scientific isolates. Eur. J. Med. Chem. 149, 248–256 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kwong, P. D., McDonald, N. Q., Sigler, P. B. & Hendrickson, W. A. Construction of β2-bungarotoxin — potassium channel binding by kunitz modules and focused phospholipase motion. Construction 3, 1109–1119 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rowan, E. G. What does β-bungarotoxin do on the neuromuscular junction? Toxicon 39, 107–118 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Doley, R. & Kini, R. M. Protein complexes in snake venom. Cell. Mol. Life Sci. 66, 2851–2871 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kini, R. M. & Koh, C. Y. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: definition and nomenclature of interplay websites. Toxins 8, 284 (2016).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sanchez, E. F., Flores-Ortiz, R. J., Alvarenga, V. G. & Eble, J. A. Direct fibrinolytic snake venom metalloproteinases affecting hemostasis: structural, biochemical options and therapeutic potential. Toxins 9, 392 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bledzka, Ok., Smyth, S. S. & Plow, E. F. Integrin αIIbβ3 from discovery to efficacious therapeutic goal. Circ. Res. 112, 1189–1200 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takeda, S., Igarashi, T. & Mori, H. Crystal construction of RVV-X: an instance of evolutionary acquire of specificity by ADAM proteinases. FEBS Lett. 581, 5859–5864 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lingott, T., Schleberger, C., Gutiérrez, J. M. & Merfort, I. Excessive-resolution crystal construction of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: Perception into inhibitor binding. Biochemistry 48, 6166–6174 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Akao, P. Ok. et al. Structural research of BmooMPα-I, a non-hemorrhagic metalloproteinase from Bothrops moojeni venom. Toxicon 55, 361–368 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boldrini-França, J. et al. Past hemostasis: a snake venom serine protease with potassium channel blocking and potential antitumor actions. Sci. Rep. 10, 4476 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mackessy, S. P. in Toxins and Hemostasis (eds Kini, R., Clemetson, Ok., Markland, F., McLane, M. & Morita, T.) 519–557 (Springer, 2010).

  • Vaiyapuri, S., Thiyagarajan, N., Hutchinson, E. G. & Gibbins, J. M. Sequence and phylogenetic evaluation of viper venom serine proteases. Bioinformation 8, 763–772 2012).

  • Kurtović, T. et al. VaSP1, catalytically lively serine proteinase from Vipera ammodytes ammodytes venom with unconventional lively website triad. Toxicon 77, 93–104 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sousa, S. F. et al. Utility of quantum mechanics/molecular mechanics strategies within the examine of enzymatic response mechanisms. Wiley Interdisc. Rev. Mol. Sci. 7, 1281 (2017). A assessment of the computational strategies getting used to elucidate the snake venom enzymatic reactivity.


    Google Scholar
     

  • Chung, L. W. et al. The ONIOM technique and its purposes. Chem. Rev. 115, 5678–5796 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amaro, R. E. & Mulholland, A. J. Multiscale strategies in drug design bridge chemical and organic complexity within the seek for cures. Nat. Rev. Chem. 2, 148 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Himo, F. Latest developments in quantum chemical modeling of enzymatic reactions. J. Am. Chem. Soc. 139, 6780–6786 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Estevão-Costa, M. I., Sanz-Soler, R., Johanningmeier, B. & Eble, J. A. Snake venom parts in drugs: from the symbolic rod of Asclepius to tangible medical analysis and utility. Int. J. Biochem. Cell Biol. 104, 94–113 (2018). This assessment describes the appliance of snake venoms in drug discovery.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Marsh, N. A. Diagnostic makes use of of snake venom. Haemostasis 31, 211–217 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Francischetti, I. M. B. & Gil, M. R. in Transfusion Drugs and Hemostasis (eds Shaz, B. H., Hillyer, C. D. & Reyes Gil, M.) 969–975 (Elsevier, 2019).

  • Schmidtko, A., Lötsch, J., Freynhagen, R. & Geisslinger, G. Ziconotide for therapy of extreme persistent ache. Lancet 375, 1569–1577 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miljanich, G. P. Ziconotide: neuronal calcium channel blocker for treating extreme persistent ache. Curr. Med. Chem. 11, 3029–3040 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rocha, E. S. M., Beraldo, W. T. & Rosenfeld, G. Bradykinin, a hypotensive and easy muscle stimulating issue launched from plasma globulin by snake venoms and by trypsin. Am. J. Physiol. 156, 261–273 (1949).

    Article 

    Google Scholar
     

  • Ferreira, S. H. A bradykinin-potentiating issue (BPF) current within the venom of Bothrops jararaca. Br. J. Pharmacol. Chemother. 24, 163–169 (1965).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ferreira, S. H., Bartelt, D. C. & Greene, L. J. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9, 2583–2593 (1970).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McCleary, R. J. R. & Kini, R. M. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological instruments and drug leads. Toxicon 62, 56–74 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ferreira, S. H., Greene, L. J., Alabaster, V. A., Bakhle, Y. S. & Vane, J. R. Exercise of assorted fractions of bradykinin potentiating issue towards angiotensin-I changing enzyme. Nature 225, 379–380 (1970).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cushman, D. W. & Ondetti, M. A. Historical past of the design of captopril and associated inhibitors of angiotensin changing enzyme. Hypertension 17, 589–592 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bryan, J. From snake venom to ACE inhibitor — the invention and rise of captopril. Pharm. J. 282, 455–456 (2009).


    Google Scholar
     

  • Patchett, A. A. The chemistry of enalapril. Br. J. Clin. Pharmacol. 18, 201–207 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Acharya, Ok. R., Sturrock, E. D., Riordan, J. F. & Ehlers, M. R. W. ACE revisited: a brand new goal for structure-based drug design. Nat. Rev. Drug Discov. 2, 891–902 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Acharya, G., Wang, W., Vavilala, D. T., Mukherji, M. & Lee, C. H. in Superior Drug Supply (eds Mitra, A. Ok., Lee, C. H. & Cheng, Ok.) 341–364 (Wiley, 2014).

  • Lazarovici, P., Marcinkiewicz, C. & Lelkes, P. I. From snake venom’s disintegrins and C-type lectins to anti-platelet medicine. Toxins 11, 303 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Topol, E. J., Byzova, T. V. & Plow, E. F. Platelet GPIIb-IIIa blockers. Lancet 353, 227–231 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lang, S. H. et al. Remedy with tirofiban for acute coronary syndrome (ACS): a scientific assessment and community evaluation. Curr. Med. Res. Opin. 28, 351–370 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barrett, J. S. et al. Pharmacokinetics and pharmacodynamics of MK-383, a selective nonpeptide platelet glycoprotein-IIb/IIIa receptor antagonist, in wholesome males. Clin. Pharmacol. Ther. 56, 377–388 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gan, Z. R., Gould, R. J., Jacobs, J. W., Friedman, P. A. & Polokoff, M. A. Echistatin — a potent platelet-aggregation inhibitor from the venom of the viper Echis carinatus. J. Biol. Chem. 263, 19827–19832 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hartman, G. D. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J. Med. Chem. 35, 4640–4642 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van Drie, J. H. Laptop-aided drug design: the subsequent 20 years. J. Comput. Aided Mol. Des. 21, 591–601 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Scarborough, R. M. et al. Design of potent and particular integrin antagonists — peptide antagonists with excessive specificity for glycoprotein-IIb–IIIa. J. Biol. Chem. 268, 1066–1073 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Scarborough, R. M. et al. Barbourin — a GPIIb–IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J. Biol. Chem. 266, 9359–9362 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Scarborough, R. M. Improvement of eptifibatide. Am. Coronary heart J. 138, 1093–1104 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • O’Shea, J. C. & Tcheng, J. E. Eptifibatide: a potent inhibitor of the platelet receptor integrin glycoprotein IIb/IIIa. Professional Opin. Pharmacother. 3, 1199–1210 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Masuda, H. Batroxobin accelerated tissue restore by way of neutrophil extracellular lure regulation and defibrinogenation in a murine ischemic hindlimb mannequin. PLoS ONE 14, e0220898 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vu, T. T. Batroxobin binds fibrin with greater affinity and promotes clot growth to a better extent than thrombin. J. Biol. Chem. 288, 16862–16871 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Waheed, H., Moin, S. F. & Choudhary, M. I. Snake venom: from lethal toxins to life-saving therapeutics. Curr. Med. Chem. 24, 1874–1891 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gazerani, P. & Cairns, B. E. Venom-based biotoxins as potential analgesics. Professional Rev. Neurother. 14, 1261–1274 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, F., Reid, P. F. & Qin, Z.-H. Cobrotoxin might be an efficient therapeutic for COVID-19. Acta Pharmacol. Sin. 41, 1258–1260 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pérez-Peinado, C. et al. Hitchhiking with nature: snake venom peptides to battle most cancers and superbugs. Toxins 12, 255 (2020). This assessment describes the appliance of snake venoms to deal with most cancers and an infection by antibiotic-resistant microorganisms.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li, B. X. et al. In vitro evaluation and part I randomized scientific trial of anfibatide, a snake-venom-derived anti-thrombotic agent concentrating on human platelet GPIbα. Sci. Rep. 11, 11663 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Crystal construction of agkisacucetin, a GPIb-binding snake C-type lectin that inhibits platelet adhesion and aggregation. Proteins 80, 1707–1711 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jackson, S. P. The rising complexity of platelet aggregation. Blood 109, 5087–5095 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo, Y. et al. Balancing the expression and manufacturing of a heterodimeric protein: recombinant agkisacutacin as a novel antithrombotic drug candidate. Sci. Rep. 5, 11730 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tasima, L. J. et al. Crotamine in Crotalus durissus: distribution in line with subspecies and geographic origin, in captivity or nature. J. Venom. Anim. Toxins Incl. Trop. Dis. 26, 20190053 (2020).

    Article 

    Google Scholar
     

  • Moreira, L. A. et al. Acute toxicity, antinociceptive, and anti inflammatory actions of the orally administered crotamine in mice. Naunyn Schmiedebergs Arch. Pharmacol. 394, 1703–1711 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nicastro, G. et al. Answer construction of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. Eur. J. Biochem. 270, 1969–1979 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kerkis, A. et al. Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J. 18, 1407–1409 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hayashi, M. A. F. et al. Cytotoxic results of crotamine are mediated by lysosomal membrane permeabilization. Toxicon 52, 508–517 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kerkis, A., Hayashi, M. A. F., Yamane, T. & Kerkis, I. Properties of cell penetrating peptides (CPPs). IUBMB Life 58, 7–13 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pereira, A. et al. Crotamine toxicity and efficacy in mouse fashions of melanoma. Professional Opin. Investig. Medication 20, 1189–1200 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Campeiro, J. D. et al. Oral therapy with a rattlesnake native polypeptide crotamine effectively inhibits the tumor progress with no potential toxicity for the host animal and with suggestive constructive results on animal metabolic profile. Amino Acids 50, 267–278 (2018). This examine demonstrates the promising antitumoral exercise of crotamine by oral administration.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mancin, A. C. et al. The analgesic exercise of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: a biochemical and pharmacological examine. Toxicon 36, 1927–37 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Carvalho Porta, L. et al. Biophysical and pharmacological characterization of a full-length artificial analog of the antitumor polypeptide crotamine. J. Mol. Med. 98, 1561–1571 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Mambelli-Lisboa, N. C., Sciani, J. M., Silva, A. R. B. P. D. & Kerkis, I. Co-localization of crotamine with inside membranes and accentuated accumulation in tumor cells. Molecules 23, 968 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Park, J. Y. et al. Antinociceptive and anti inflammatory results of recombinant crotamine in mouse fashions of ache. Toxins 13, 707 (2021). An in vivo examine of the antinociceptive and anti inflammatory exercise of crotamine.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schweitz, H., Vigne, P., Moinier, D., Frelin, C. & Lazdunski, M. A brand new member of the natriuretic peptide household is current within the venom of the inexperienced mamba (Dendroaspis angusticeps). J. Biol. Chem. 267, 13928–13932 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Volpe, M., Rubattu, S. & Burnett, J. Natriuretic peptides in cardiovascular ailments: present use and views. Eur. Coronary heart J. 35, 419–425 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • O’Connor, C. M. M. et al. Impact of nesiritide in sufferers with acute decompensated coronary heart failure. N. Engl. J. Med. 365, 32–43 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Matsue, Y. et al. Carperitide is related to elevated in-hospital mortality in acute coronary heart failure: a propensity score-matched evaluation. J. Card. Fail. 21, 859–864 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ichiki, T., Dzhoyashvili, N. & Burnett, J. C. Jr Natriuretic peptide primarily based therapeutics for coronary heart failure: cenderitide. A novel first-in-class designer natriuretic peptide. Int. J. Cardiol. 281, 166–171 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Kawakami, R. et al. A human examine to guage security, tolerability, and cyclic GMP activating properties of cenderitide in topics with secure persistent coronary heart failure. Clin. Pharmacol. Ther. 104, 546–552 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Diochot, S. et al. Black mamba venom peptides goal acid-sensing ion channels to abolish ache. Nature 490, 552–557 (2012). This paper studies the invention of a black mamba 3FTx that targets acid-sensing ion channels with potent analgesic exercise.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoder, N., Yoshioka, C. & Gouaux, E. Gating mechanisms of acid-sensing ion channels. Nature 555, 397–401 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wemmie, J. A., Taugher, R. J. & Kreple, C. J. Acid-sensing ion channels in ache and illness. Nat. Rev. Neurosci. 14, 461–471 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schroeder, C. I. et al. Chemical synthesis, 3D construction, and ASIC binding website of the toxin mambalgin-2. Angew. Chem. Int. Ed. 53, 1017–1020 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Mourier, G. et al. Mambalgin-1 pain-relieving peptide, stepwise solid-phase synthesis, crystal construction, and purposeful area for acid-sensing ion channel 1a Inhibition. J. Biol. Chem. 291, 2616–2629 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Diochot, S. et al. Analgesic results of mambalgin peptide inhibitors of acid-sensing ion channels in inflammatory and neuropathic ache. Ache 157, 552–559 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verkest, C. et al. Results of systemic inhibitors of acid-sensing ion channels 1 (ASIC1) towards acute and persistent mechanical allodynia in a rodent mannequin of migraine. Br. J. Pharmacol. 175, 4154–4166 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Solar, D. M. et al. Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1. eLife 9, 57096 (2020). This paper studies structural particulars of the working mechanism of the analgesic mambalgin-1 in blocking the acid-sensing ion channel 1a.

    Article 

    Google Scholar
     

  • Salinas, M. et al. Mambalgin-1 pain-relieving peptide locks the hinge between α4 and α5 helices to inhibit rat acid-sensing ion channel 1a. Neuropharmacology 185, 108453 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yacoub, T. Antimicrobials from venomous animals: an outline. Molecules 25, 2402 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Siniavin, A. E. et al. Snake venom phospholipase A2s exhibit sturdy virucidal exercise towards SARS-CoV-2 and inhibit the viral spike glycoprotein interplay with ACE2. Cell Mol. Life Sci. 78, 7777–7794 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Santos-Filho, N. A. et al. Antibacterial exercise of the non-cytotoxic peptide (p-BthTX-I)2 and its serum degradation product towards multidrug-resistant micro organism. Molecules 22, 1898 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Freire, M. C. L. C. et al. Non-toxic dimeric peptides derived from the bothropstoxin-I are potent SARS-CoV-2 and papain-like protease inhibitors. Molecules 26, 4896 (2021). A report of snake venom peptides with antiviral exercise in direction of SARS-CoV-2.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Domling, A. & Gao, L. Chemistry and biology of SARS-CoV-2. Chem 6, 1283–1295 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang, J. et al. Freely accessible chemical database sources of compounds for in silico drug discovery. Curr. Med. Chem. 26, 7581–7597 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mendez, D. et al. ChEMBL: in direction of direct deposition of bioassay knowledge. Nucleic Acids Res. 47, 930–940 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sterling, T. & Irwin, J. J. ZINC 15-ligand discovery for everybody. J. Chem. Inf. Mannequin. 55, 2324–2337 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Hilten, N. et al. Digital compound libraries in computer-assisted drug discovery. J. Chem. Inf. Mannequin. 59, 644–651 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov. 17, 97–113 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Warkentin, T. E., Greinacher, A. & Koster, A. Bivalirudin. Thromb. Haemost. 99, 830–9 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barnett, A. Exenatide. Professional Opin. Pharmacother. 8, 2593–2608 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • King, G. F. in Venoms to Medication: Venom as a Supply for the Improvement of Human Therapeutics (ed. King, G. F.) 37–79 (Royal Society of Chemistry, 2015).

  • Kini, R. M. Toxins in thrombosis and haemostasis: potential past creativeness. J. Thromb. Haemost. 9, 195–208 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Santos, R. et al. A complete map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kini, R. M. & Evans, H. J. A mannequin to elucidate the pharmacological results of snake venom phospholipases A2. Toxicon 27, 613–35 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kini, R. M. Pleasure forward: construction, operate and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42, 827–840 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Croll, T. I., Sammito, M. D., Kryshtafovych, A. & Learn, R. J. Analysis of template-based modeling in CASP13. Proteins Struct. Funct. Bioinform. 87, 1113–1127 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Alford, R. F. et al. The Rosetta all-atom power operate for macromolecular modeling and design. J. Chem. Concept Comput. 13, 3031–3048 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Das, R. & Baker, D. Macromolecular modeling with Rosetta. Annu. Rev. Biochem. 77, 363–382 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Y., Virtanen, J., Xue, Z. & Zhang, Y. I-TASSER-MR: automated molecular alternative for distant-homology proteins utilizing iterative fragment meeting and progressive sequence truncation. Nucleic Acids Res. 45, 429–434 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Webb, B. & Sali, A. Comparative protein construction modeling utilizing MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2020).


    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lensink, M. F., Nadzirin, N., Velankar, S. & Wodak, S. J. Modeling protein–protein, protein–peptide, and protein–oligosaccharide complexes: CAPRI. Proteins 88, 916–938 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moreira, I. S., Fernandes, P. A. & Ramos, M. J. Protein–protein docking coping with the unknown. J. Comput. Chem. 31, 317–342 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Simões, I. C. M. et al. Properties that rank protein–protein docking poses with excessive accuracy. Phys. Chem. Chem. Phys. 20, 20927–20942 (2018). A promising computational technique to foretell toxin–goal complexation buildings.

    PubMed 
    Article 

    Google Scholar
     

  • Moreira, I. S., Martins, J. M., Coimbra, J. T. S., Ramos, M. J. & Fernandes, P. A. A brand new scoring operate for protein–protein docking that identifies native buildings with unprecedented accuracy. Phys. Chem. Chem. Phys. 17, 2378–2387 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Quignot, C. et al. InterEvDock2: an expanded server for protein docking utilizing evolutionary and organic data from homology fashions and multimeric inputs. Nucleic Acids Res. 46, 408–416 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kozakov, D. et al. The ClusPro net server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park, T., Baek, M., Lee, H. & Seok, C. GalaxyTongDock: symmetric and uneven ab initio protein–protein docking net server with improved power parameters. J. Comput. Chem. 40, 2413–2417 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zundert, G. C. P. et al. The HADDOCK2.2 net server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Moreira, I. S., Fernandes, P. A. & Ramos, M. J. Scorching spots — a assessment of the protein–protein interface determinant amino-acid residues. Proteins Struct. Funct. Bioinform. 68, 803–812 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Martins, S. A. et al. Computational alanine scanning mutagenesis: MM-PBSA vs TI. J. Chem. Concept Comput. 9, 1311–1319 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Simões, I. C. M., Costa, I. P. D., Coimbra, J. T. S., Ramos, M. J. & Fernandes, P. A. New parameters for greater accuracy within the computation of binding free power variations upon alanine scanning mutagenesis on protein–protein interfaces. J. Chem. Inf. Mannequin. 57, 60–72 (2017). An correct computational technique to establish toxin–goal binding areas and binding epitopes.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Geng, C., Xue, L. C., Roel-Touris, J. & Bonvin, A. M. J. J. Discovering the ΔΔG spot: are predictors of binding affinity modifications upon mutations in protein–protein interactions prepared for it? Wiley Interdiscip. Rev. Mol. Sci. 9, 1410 (2019).


    Google Scholar
     

  • Barlow, Ok. A. et al. Flex ddG: Rosetta ensemble-based estimation of modifications in protein–protein binding affinity upon mutation. J. Phys. Chem. B 122, 5389–5399 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kortemme, T. & Baker, D. A easy bodily mannequin for binding power scorching spots in protein–protein complexes. Proc. Natl Acad. Sci. USA 99, 14116–21 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sribar, J. et al. The neurotoxic secreted phospholipase A2 from the Vipera a. ammodytes venom targets cytochrome c oxidase in neuronal mitochondria. Sci. Rep. 9, 283 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Meenakshisundaram, R., Sweni, S. & Thirumalaikolundusubramanian, P. Speculation of snake and bug venoms towards human immunodeficiency virus: a assessment. AIDS Res. Ther. 6, 25 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fenard, D. et al. Secreted phospholipases A2, a brand new class of HIV inhibitors that block virus entry into host cells. J. Clin. Make investments. 104, 611–618 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Muller, V. D. M. et al. Crotoxin and phospholipases A2 from Crotalus durissus terrificus confirmed antiviral exercise towards dengue and yellow fever viruses. Toxicon 59, 507–15 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmed, N. Ok., Tennant, Ok. D., Markland, F. S. & LACZ, J. P. Biochemical traits of fibrolase, a fibrinolytic protease from snake venom. Haemostasis 20, 147–154 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Boldrini-Franca, J., Pinheiro-Junior, E. L. & Arantes, E. C. Purposeful and organic insights of rCollinein-1, a recombinant serine protease from Crotalus durissus collilineatus. J. Venom. Anim. Toxins Incl. Trop. Dis. 25, 147118 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Funk, C., Gmür, J., Herold, R. & Straub, P. W. Reptilase-R — a brand new reagent in blood coagulation. Br. J. Haematol. 21, 43–52 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Graziano, F. et al. Autologous fibrin sealant (Vivostat(R)) within the neurosurgical observe. Half I: intracranial surgical process. Surg. Neurol. Int. 6, 77 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Graziano, F., Maugeri, R., Basile, L., Meccio, F. & Iacopino, D. G. Aulogous fibrin sealant (Vivostat(R)) within the neurosurgical observe. Half II: vertebro-spinal procedures. Surg. Neurol. Int. 7, 77–82 (2016).


    Google Scholar
     

  • Koivula, Ok., Rondinelli, S. & Nasman, J. The three-finger toxin MTα is a selective α2B-adrenoceptor antagonist. Toxicon 56, 440–447 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barnwal, B. et al. Ringhalexin from Hemachatus haemachatus: a novel inhibitor of extrinsic tenase complicated. Sci. Rep. 6, 25935 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Banerjee, Y. et al. Biophysical characterization of anticoagulant hemextin AB complicated from the venom of snake Hemachatus haemachatus. Biophys. J. 93, 3963–76 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chanda, C., Sarkar, A., Sistla, S. & Chakrabarty, D. Anti-platelet exercise of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom. Biochem. Biophys. Res. Commun. 441, 550–554 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fernandez-Gomez, R. et al. Progress inhibition of Trypanosoma cruzi and Leishmania donovani infantum by totally different snake venoms — preliminary identification of proteins from Cerastes cerastes venom which work together with the parasites. Toxicon 32, 875–882 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Costa Torres, A. F. et al. Antibacterial and antiparasitic results of Bothrops marajoensis venom and its fractions: phospholipase A2 and l-amino acid oxidase. Toxicon 55, 795–804 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sakurai, Y. et al. Anticoagulant exercise of M-LAO, l-amino acid oxidase purified from Agkistrodon halys blomhoffii, by selective inhibition of issue IX. Biochim. Biophys. Acta 1649, 51–57 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adade, C. M. et al. Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising exercise towards trypanosomes and Leishmania. PLoS Negl. Trop. Dis. 8, 3252 (2014).

    Article 

    Google Scholar
     

  • Badari, J. C., Díaz-Roa, A., Rocha, M. M. T., Mendonça, R. Z. & Silva Junior, P. I. D. Patagonin-CRISP: antimicrobial exercise and supply of antimicrobial molecules in Duvernoy’s gland secretion (Philodryas patagoniensis snake). Entrance. Pharmacol. 11, 586705 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tadokoro, T., Modahl, C. M., Maenaka, Ok. & Aoki-Shioi, N. Cysteine-rich secretory proteins (CRISPs) from venomous snakes: an outline of the purposeful range in a big and underappreciated superfamily. Toxins 12, 175 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Assafim, M. et al. Exploiting the antithrombotic impact of the (professional)thrombin inhibitor bothrojaracin. Toxicon 119, 46–51 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shen, D.-Ok. et al. Ca2+-induced binding of anticoagulation issue II from the venom of Agkistrodon acutus with issue IX. Biopolymers 97, 818–824 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Anticoagulation issue I, a snaclec (snake C-type lectin) from Agkistrodon acutus venom binds to FIX in addition to FX: Ca2+ induced binding knowledge. Toxicon 59, 718–723 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rabelo, L. F. G. et al. Alternagin-C, a disintegrin-like protein from Bothrops alternatus venom, attenuates irritation and angiogenesis and stimulates collagen deposition of sponge-induced fibrovascular tissue in mice. Int. J. Biol. Macromol. 140, 653–660 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gilchrist, I. C. Platelet glycoprotein IIb/IIIa inhibitors in percutaneous coronary intervention: concentrate on the pharmacokinetic–pharmacodynamic relationships of eptifibatide. Clin. Pharmacokinet. 42, 703–720 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lucena, S. E. et al. Anti-invasive and anti-adhesive actions of a recombinant disintegrin, r-viridistatin 2, derived from the Prairie rattlesnake (Crotalus viridis viridis). Toxicon 60, 31–9 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kuo, Y. J., Chung, C. H. & Huang, T. F. From discovery of snake venom disintegrins to a safer therapeutic antithrombotic agent. Toxins 11, 372 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cesar, P. H. S., Braga, M. A., Trento, M. V. C., Menaldo, D. L. & Marcussi, S. Snake venom disintegrins: an outline of their interplay with integrins. Curr. Drug Targets 20, 465–477 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Calvete, J. J. The persevering with saga of snake venom disintegrins. Toxicon 62, 40–49 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ciolek, J. et al. Inexperienced mamba peptide targets type-2 vasopressin receptor towards polycystic kidney illness. Proc. Natl Acad. Sci. USA 114, 7154–7159 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Colombo, A. L. et al. Results of the pure peptide crotamine from a South American rattlesnake on Candida auris, an emergent multidrug antifungal resistant human pathogen. Biomolecules 9, 205 (2019).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • El Chamy Maluf, S. et al. Inhibition of malaria parasite Plasmodium falciparum improvement by crotamine, a cell penetrating peptide from the snake venom. Peptides 78, 11–16 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dal Mas, C. et al. Anthelmintic results of a cationic toxin from a South American rattlesnake venom. Toxicon 116, 49–55 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Macedo, S. R. A. et al. Biodegradable microparticles containing crotamine remoted from Crotalus durissus terrificus show antileishmanial exercise in vitro. Pharmacology 95, 78–86 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mackessy S. P. (ed.) Handbook of Venoms and Toxins of Reptiles (CRC, 2021). This e book describes the composition, bioactivity, pathophysiology and medicinal purposes of snake venom.

  • Salvador, G. H. M., dos Santos, J. I., Lomonte, B. & Fontes, M. R. M. Crystal construction of a phospholipase A2 from Bothrops asper venom: insights into a brand new putative “myotoxic cluster”. Biochimie 133, 95–102 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murakami, M. T. et al. Inhibition of myotoxic exercise of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin. J. Mol. Biol. 350, 416–426 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kalita, B., Mackessy, S. P. & Mukherjee, A. Ok. Proteomic evaluation reveals geographic variation in venom composition of Russell’s viper within the Indian subcontinent: implications for scientific manifestations post-envenomation and antivenom therapy. Professional Rev. Proteomics 15, 837–849 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Favaloro, E. J. The Russell viper venom time (RVVT) take a look at for investigation of lupus anticoagulant (LA). Am. J. Hematol. 94, 1290–1296 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Chen, H.-S., Tsai, H.-Y., Wang, Y.-M. & Tsai, I.-H. P-III hemorrhagic metalloproteinases from Russell’s viper venom: cloning, characterization, phylogenetic and purposeful website analyses. Biochimie 90, 1486–1498 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakayama, D., Ben Ammar, Y., Miyata, T. & Takeda, S. Structural foundation of coagulation issue V recognition for cleavage by RVV-V. FEBS Lett. 585, 3020–3025 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • You, W.-Ok. et al. Purposeful characterization of recombinant batroxobin, a snake venom thrombin-like enzyme, expressed from Pichia pastoris. FEBS Lett. 571, 67–73 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sousa, L. F. et al. Purposeful proteomic analyses of Bothrops atrox venom reveals phenotypes related to habitat variation within the Amazon. J. Proteom. 159, 32–46 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Núñez, V. et al. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon areas of Brazil, Perú and Ecuador counsel the prevalence of geographic variation of venom phenotype by a pattern in direction of paedomorphism. J. Proteom. 73, 57–78 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Calvete, J. J. et al. Snake inhabitants venomics and antivenomics of Bothrops atrox: paedomorphism alongside its transamazonian dispersal and implications of geographic venom variability on snakebite administration. J. Proteom. 74, 510–527 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Kohlhoff, M. et al. Exploring the proteomes of the venoms of the Peruvian pit vipers Bothrops atrox, B. barnetti and B. pictus. J. Proteom. 75, 2181–2195 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Hatakeyama, D. M. et al. Venom complexity of Bothrops atrox (frequent lancehead) siblings. J. Venom. Anim. Toxins Incl. Trop. Dis. 26, 20200018 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wallnoefer, H. G., Lingott, T., Gutiérrez, J. M., Merfort, I. & Liedl, Ok. R. Spine flexibility controls the exercise and specificity of a protein–protein interface: specificity in snake venom metalloproteases. J. Am. Chem. Soc. 132, 10330–10337 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Camacho, E., Escalante, T., Remans, Ok., Gutiérrez, J. M. & Rucavado, A. Web site mutation of residues in a loop surrounding the lively website of a PI snake venom metalloproteinase abrogates its hemorrhagic exercise. Biochem. Biophys. Res. Commun. 512, 859–863 (2019). This examine gives perception into the molecular-level mechanism of physiological substrate recognition by SVMPs.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments