[ad_1]
Ollerton, J., Winfree, R. & Tarrant, S. What number of flowering vegetation are pollinated by animals?. Oikos 120(3), 321–326 (2011).
Aizen, M. A. & More durable, L. D. The worldwide inventory of domesticated honey bees is rising slower than agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).
Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540(7632), 220–229. https://doi.org/10.1038/nature20588 (2016).
Rader, R. et al. Non-bee bugs are essential contributors to world crop pollination. Proc. Natl. Acad. Sci. 113(1), 146–151 (2016).
Osterman, J. et al. World tendencies within the quantity and variety of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653 (2021).
Velthuis, H. H. W. & Van Doorn, A. A century of advances in bumblebee domestication and the financial and environmental features of its commercialization for pollination. Apidologie 37(4), 421–451 (2006).
Hung, Ok. L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide significance of honey bees as pollinators in pure habitats. Proc. Royal Soc. B Biol. Sci. 285(1870), 20172140 (2018).
Brown, M. J. F. & Paxton, R. J. The conservation of bees: A world perspective. Apidologie 40(3), 410–416 (2009).
Cameron, S. A. & Sadd, B. M. World tendencies in bumble bee well being. Annu. Rev. Entomol. 65, 209–232 (2020).
Potts, S. G. et al. World pollinator declines: Traits, impacts and drivers. Traits Ecol. Evol. 25(6), 345–353 (2010).
Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: Pressures on pollinators. Entrance. Ecol. Environ. 11(5), 251–259 (2013).
David, A. et al. Widespread contamination of wildflower and bee-collected pollen with advanced mixtures of neonicotinoids and fungicides generally utilized to crops. Environ. Int. 88, 169–178. https://doi.org/10.1016/j.envint.2015.12.011 (2016).
Gradish, A. E. et al. Comparability of pesticide publicity in honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae): implications for danger assessments. Environ. Entomol. 48(1), 12–21 (2019).
Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).
Johnson, R. M. et al. Ecologically applicable xenobiotics induce cytochrome P450s in Apis mellifera. PLoS ONE 7(2), e31051. https://doi.org/10.1371/journal.pone.0031051 (2012).
Mullin, C. A. et al. Excessive ranges of miticides and agrochemicals in North American apiaries: Implications for honey bee well being. PLoS ONE 5(3), e9754. https://doi.org/10.1371/journal.pone.0009754 (2010).
Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. 108(2), 662–667 (2011).
Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53(1), 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454 (2008).
Meeus, I., Brown, M. J. F., de Graaf, D. C. & Smagghe, G. Results of invasive parasites on bumble bee declines. Conserv. Biol. 25(4), 662–671. https://doi.org/10.1111/j.1523-1739.2011.01707.x (2011).
O’Neal, S. T., Anderson, T. D. & Wu-Good, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62. https://doi.org/10.1016/j.cois.2018.01.006 (2018).
Botías, C. et al. A number of stressors work together to impair the efficiency of bumblebee Bombus terrestris colonies. J. Anim. Ecol. 90(2), 415–431 (2021).
Dance, C., Botías, C. & Goulson, D. The mixed results of a monotonous weight loss program and publicity to thiamethoxam on the efficiency of bumblebee micro-colonies. Ecotoxicol. Environ. Saf. 139, 194–201 (2017).
Fauser-Misslin, A., Sadd, B. M., Neumann, P. & Sandrock, C. Affect of mixed pesticide and parasite publicity on bumblebee colony traits within the laboratory. J. Appl. Ecol. 51(2), 450–459 (2014).
Zaragoza-Trello, C., Vilà, M., Botías, C. & Bartomeus, I. Interactions amongst world change pressures act in a non-additive method on bumblebee people and colonies. Funct. Ecol. 35(2), 420–434 (2021).
Collett, M., Chittka, L. & Collett, T. S. Spatial reminiscence in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).
Klein, S., Cabirol, A., Devaud, J. M., Barron, A. B. & Lihoreau, M. Why bees are so weak to environmental stressors. Traits Ecol. Evol. 32(4), 268–278 (2017).
Dyer, A. G., Dorin, A., Reinhardt, V., Garcia, J. E. & Rosa, M. G. Bee reverse-learning habits and intra-colony variations: simulations primarily based on behavioral experiments reveal advantages of range. Ecol. Mannequin. 277, 119–131 (2014).
Raine, N. E. & Chittka, L. No trade-off between studying velocity and associative flexibility in bumblebees: A reversal studying take a look at with a number of colonies. PLoS ONE 7(9), e45096 (2012).
Henry, M. et al. A standard pesticide decreases foraging success and survival in honey bees. Science 336(6079), 348–350 (2012).
Siviter, H., Koricheva, J., Brown, M. J. F. & Leadbeater, E. Quantifying the influence of pesticides on studying and reminiscence in bees. J. Appl. Ecol. 55(6), 2812–2821 (2018).
Bitterman, M. E., Menzel, R., Fietz, A. & Schäfer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp. Psychol. 97(2), 107–119. https://doi.org/10.1037/0735-7036.97.2.107 (1983).
Takeda, Ok. Classical conditioned response within the honey bee. J. Insect Physiol. 6(3), 168–179. https://doi.org/10.1016/0022-1910(61)90060-9 (1961).
Laloi, D. et al. Olfactory conditioning of the proboscis extension in bumble bees. Entomol. Exp. Appl. 90(2), 123–129 (1999).
Gómez-Moracho, T., Heeb, P. & Lihoreau, M. Results of parasites and pathogens on bee cognition. Ecol. Entomol. 42, 51–64 (2017).
Garratt, M. P. D. et al. The identification of crop pollinators helps goal conservation for improved ecosystem companies. Biol. Cons. 169, 128–135 (2014).
Morandin, L. A., Laverty, T. M. & Kevan, P. G. Bumble bee (Hymenoptera: Apidae) exercise and pollination ranges in industrial tomato greenhouses. J. Econ. Entomol. 94(2), 462–467 (2001).
Siviter, H. et al. No proof for unfavourable impacts of acute sulfoxaflor publicity on bee olfactory conditioning or working reminiscence. PeerJ 7, e7208 (2019).
Sparks, T. C. et al. Sulfoxaflor and the sulfoximine pesticides: Chemistry, mode of motion and foundation for efficacy on resistant bugs. Pestic. Biochem. Physiol. 107(1), 1–7. https://doi.org/10.1016/j.pestbp.2013.05.014 (2013).
Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, Ok. A number of routes of pesticide publicity for honey bees dwelling close to agricultural fields. PLoS ONE 7(1), e29268 (2012).
Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective motion. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).
Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Mixed pesticide publicity severely impacts individual-and colony-level traits in bees. Nature 491(7422), 105–108 (2012).
Stanley, D. A., Russell, A. L., Morrison, S. J., Rogers, C. & Raine, N. E. Investigating the impacts of field-realistic publicity to a neonicotinoid pesticide on bumblebee foraging, homing potential and colony development. J. Appl. Ecol. 53(5), 1440–1449 (2016).
Williamson, S. M. & Wright, G. A. Publicity to a number of cholinergic pesticides impairs olfactory studying and reminiscence in honeybees. J. Exp. Biol. 216(10), 1799–1807 (2013).
Yang, E. C., Chuang, Y. C., Chen, Y. L. & Chang, L. H. Irregular foraging habits induced by sublethal dosage of imidacloprid within the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101(6), 1743–1748 (2008).
Yang, E., Chang, H., Wu, W. & Chen, Y. Impaired olfactory associative habits of honeybee staff as a result of contamination of imidacloprid within the larval stage. PLoS ONE 7(11), e49472 (2012).
Watson, G. B., Siebert, M. W., Wang, N. X., Loso, M. R. & Sparks, T. C. Sulfoxaflor–A sulfoximine insecticide: Assessment and evaluation of mode of motion, resistance and cross-resistance. Pestic. Biochem. Physiol. 178, 104924 (2021).
Cordes, N. et al. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. J. Invertebr. Pathol. 109(2), 209–216 (2012).
Gillespie, S. Components affecting parasite prevalence amongst wild bumblebees. Ecol. Entomol. 35(6), 737–747 (2010).
Plischuk, S., Antúnez, Ok., Haramboure, M., Minardi, G. M. & Lange, C. E. Lengthy-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9(2), 169–173 (2017).
Shykoff, J. A. & Schmid-Hempel, P. Incidence and results of 4 parasites in pure populations of bumble bees in Switzerland. Apidologie 22(2), 117–125 (1991).
Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers contaminated by a intestine parasite have an impaired potential to make the most of floral data. Proc. Royal Soc. B Biol. Sci. 273(1590), 1073–1078 (2006).
Otterstatter, M. C., Gegear, R. J., Colla, S. R. & Thomson, J. D. Results of parasitic mites and protozoa on the flower fidelity and foraging price of bumble bees. Behav. Ecol. Sociobiol. 58(4), 383–389 (2005).
Martin, C. D., Fountain, M. T. & Brown, M. J. F. Bumblebee olfactory studying affected by process allocation however not by a trypanosome parasite. Sci. Rep. 8(1), 1–8 (2018).
Azpiazu, C. et al. Toxicity of the insecticide sulfoxaflor alone and together with the fungicide fluxapyroxad in three bee species. Sci. Rep. 11(1), 1–9 (2021).
European Meals Security Authority (EFSA) et al. Peer evaluate of the pesticide danger evaluation for the energetic substance sulfoxaflor in mild of confirmatory knowledge submitted. EFSA J. 17(3), e05633 (2019).
Linguadoca, A., Rizzi, C., Villa, S. & Brown, M. J. F. Sulfoxaflor and dietary deficiency synergistically cut back survival and fecundity in bumblebees. Sci. Whole Environ. 795, 148680 (2021).
Sandor, A., Sarospataki, M. & Farkas, S. The mode of motion of neonicotinoids on bugs. Növényvédelem 51(1), 14–24 (2015).
Stanley, D. A., Smith, Ok. E. & Raine, N. E. Bumblebee studying and reminiscence is impaired by persistent publicity to a neonicotinoid pesticide. Sci. Rep. 5, 16508 (2015).
Alghamdi, A., Dalton, L., Phillis, A., Rosato, E. & Mallon, E. B. Immune response impairs studying in free-flying bumble-bees. Biol. Lett. 4(5), 479–481 (2008).
Mallon, E. B., Brockmann, A. & Schmid-Hempel, P. Immune response inhibits associative studying in bugs. Proc. Royal Soc. London Sequence B Biol. Sci. 270(1532), 2471–2473 (2003).
Riddell, C. E. & Mallon, E. B. Insect psychoneuroimmunology: Immune response reduces studying in protein starved bumblebees (Bombus terrestris). Mind Behav. Immun. 20(2), 135–138 (2006).
Fries, I. et al. Molecular characterization of Nosema bombi (Microsporidia: Nosematidae) and a word on its websites of an infection in Bombus terrestris (Hymenoptera: Apoidea). J. Apic. Res. 40(3–4), 91–96 (2001).
Siviter, H., Folly, A. J., Brown, M. J. F. & Leadbeater, E. Particular person and mixed impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval development. Proc. R. Soc. B 287(1932), 20200935 (2020).
Charbonneau, L. R., Hillier, N. Ok., Rogers, R. E., Williams, G. R. & Shutler, D. Results of Nosema apis, N. ceranae, and coinfections on honey bee (Apis mellifera) studying and reminiscence. Sci. Rep. 6, 22626 (2016).
Gage, S. L. et al. Nosema ceranae parasitism impacts olfactory studying and reminiscence and neurochemistry in honey bees (Apis mellifera). J. Exp. Biol. 221(4), jeb161489. https://doi.org/10.1242/jeb.161489 (2018).
Piiroinen, S. & Goulson, D. Continual neonicotinoid pesticide publicity and parasite stress differentially impacts studying in honeybees and bumblebees. Proc. Royal Soc. B Biol. Sci. 283(1828), 20160246 (2016).
Bell, H. C., Montgomery, C. N., Benavides, J. E. & Nieh, J. C. Results of nosema ceranae (Dissociodihaplophasida: Nosematidae) and flupyradifurone on olfactory studying in honey bees, Apis mellifera (Hymenoptera: Apidae). J. Insect Sci. https://doi.org/10.1093/jisesa/ieaa130 (2020).
Brown, M. J. F., Loosli, R. & Schmid-Hempel, P. Situation-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91(3), 421–427. https://doi.org/10.1034/j.1600-0706.2000.910302.x (2000).
Siviter, H., Brown, M. J. F. & Leadbeater, E. Sulfoxaflor publicity reduces bumblebee reproductive success. Nature 561(7721), 109–112 (2018).
Worden, B. D., Skemp, A. Ok. & Papaj, D. R. Studying in two contexts: The consequences of interference and physique dimension in bumblebees. J. Exp. Biol. 208(11), 2045–2053 (2005).
Riveros, A. J. & Gronenberg, W. Olfactory studying and reminiscence within the bumblebee Bombus occidentalis. Naturwissenschaften 96(7), 851–856. https://doi.org/10.1007/s00114-009-0532-y (2009).
Mares, S., Ash, L. & Gronenberg, W. Mind allometry in bumblebee and honey bee staff. Mind Behav. Evol. 66(1), 50–61. https://doi.org/10.1159/000085047 (2005).
Arce, A. N. et al. Foraging bumblebees purchase a choice for neonicotinoid-treated meals with extended publicity. Proc. Royal Soc. B Biol. Sci. 285(1885), 20180655. https://doi.org/10.1098/rspb.2018.0655 (2018).
Muth, F., Gaxiola, R. L. & Leonard, A. S. No proof for neonicotinoid preferences within the bumblebee Bombus impatiens. Royal Soc. Open Sci. 7(5), 191883 (2020).
Rutrecht, S. T. & Brown, M. J. F. Differential virulence in a multiple-host parasite of bumble bees: resolving the paradox of parasite survival?. Oikos 118(6), 941–949 (2009).
Schmid-Hempel, P., Puhr, Ok., Krüger, N., Reber, C. & Schmid-Hempel, R. Dynamic and genetic penalties of variation in horizontal transmission for a microparasitic an infection. Evolution 53(2), 426–434 (1999).
Evans, L. J., Raine, N. E. & Leadbeater, E. Reproductive surroundings impacts studying efficiency in bumble bees. Behav. Ecol. Sociobiol. 70(12), 2053–2060 (2016).
Cole, R. J. The applying of the “triangulation” technique to the purification of nosema spores from insect tissues. J. Invertebr. Pathol. 15(2), 193–195. https://doi.org/10.1016/0022-2011(70)90233-8 (1970).
Folly, A. J., Barton-Navarro, M. & Brown, M. J. F. Publicity to nectar-realistic sugar concentrations negatively impacts the flexibility of the trypanosome parasite (Crithidia bombi) to contaminate its bumblebee host. Ecol. Entomol. 45(6), 1495–1498 (2020).
Schlüns, H., Sadd, B. M., Schmid-Hempel, P. & Crozier, R. H. An infection with the trypanosome Crithidia bombi and expression of immune-related genes within the bumblebee Bombus terrestris. Dev. Comp. Immunol. 34(7), 705–709 (2010).
Yourth, C., Brown, M. J. F. & Schmid-Hempel, P. Results of natal and novel Crithidia bombi (trypanosomatidae) infections on Bombus terrestris hosts. Insectes Soc. 55(1), 86–90. https://doi.org/10.1007/s00040-007-0974-1 (2008).
Fournier, A., Rollin, O., Le Féon, V., Decourtye, A. & Henry, M. Crop-emptying price and the design of pesticide danger evaluation schemes within the honey bee and wild bees (Hymenoptera: Apidae). J. Econ. Entomol. 107(1), 38–46 (2014).
Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Impact of acute pesticide publicity on bee spatial working reminiscence utilizing an analogue of the radial-arm maze. Sci. Rep. 6(1), 1–11 (2016).
R Core Crew. (2020). R: A language and surroundings for statistical computing. Vienna, Austria: R Basis for Statistical Computing.
Kassambara, A., Kosinski, M., Biecek, P., & Fabian, S. (2020). survminer: drawing survival curves utilizing ‘ggplot2’. R package deal model 0.4. 8. 2019.
Therneau, T. M. & Lumley, T. Package deal ‘survival’. R Prime Doc 128(10), 28–33 (2020).
Bartoń, Ok. (2020). MuMIn: Multi-Mannequin Inference. R package deal ver. 1.43. 17. CRAN: The Complete R Archive Community, Berkeley, CA, USA.
Wickham, H. ggplot2: Elegant Graphics for Information Evaluation (Springer-Verlag, 2016).
Burnham, Ok. P., & Anderson, D. R. (2002). A sensible information-theoretic method. Mannequin choice and multimodel inference, 2.
[ad_2]