[ad_1]
Minervino, A. H. H., Zava, M., Vecchio, D. & Borghese, A. Bubalus bubalis: a brief story. Entrance. Vet. Sci. 7, 570413 (2020).
Fagiolo, A. & Lai, O. Mastitis in buffalo. Ital. J. Anim. Sci. 6, 200–206 (2007).
Guccione, J. et al. Antibiotic dry buffalo remedy: impact of intramammary administration of benzathine cloxacillin towards Staphylococcus aureus mastitis in dairy water buffalo. BMC Vet. Res. 16, 191 (2020).
Moroni, P. et al. Relationships between somatic cell depend and intramammary an infection in buffaloes. J. Dairy Sci. 89, 998–1003 (2006).
Dhakal, I. P., Dhakal, P., Koshihara, T. & Nagahata, H. Epidemiological and bacteriological survey of buffalo mastitis in Nepal. J. Vet. Med. Sci. 69, 1241–1245 (2007).
Locatelli, C. et al. Impact on quarter milk somatic cell depend and antimicrobial susceptibility of Staphylococcus rostri inflicting intramammary an infection in dairy water buffaloes. J. Dairy Sci. 96, 3799–3805 (2013).
de Oliveira Moura, E. et al. Analysis of microbiological, mobile and threat elements related to subclinical mastitis in feminine buffaloes. Asian-Australas. J. Anim. Sci. 30, 1340–1349 (2017).
El-Ashker, M. et al. Microarray-based detection of resistance genes in coagulase-negative staphylococci remoted from cattle and buffalo with mastitis in Egypt. Trop. Anim. Well being Prod. 52, 3855–3862 (2020).
Aqib, A. I. et al. Antibiotic susceptibilities and prevalence of Methicillin resistant Staphylococcus aureus (MRSA) remoted from bovine milk in Pakistan. Acta Trop. 176, 168–172 (2017).
Badua, A. T., Boonyayatra, S., Awaiwanont, N., Gaban, P. B. V. & Mingala, C. N. Antibiotic resistance and genotyping of mecA-positive methicillin-resistant Staphylococcus aureus (MRSA) from milk and nasal carriage of dairy water buffaloes (Bubalus bubalis) within the Philippines. J. Adv. Vet. Anim. Res. 7, 397–406 (2020).
Badua, A. T., Boonyayatra, S., Awaiwanont, N., Gaban, P. B. V. & Mingala, C. N. Methicillin-resistant Staphylococcus aureus (MRSA) related to mastitis amongst water buffaloes within the Philippines. Heliyon 6, e05663 (2020).
Singha, S. et al. Incidence and aetiology of subclinical mastitis in water buffalo in Bangladesh. J. Dairy Res. 88, 314–320 (2021).
Guha, A., Gera, S. & Sharma, A. Analysis of milk hint parts, lactate dehydrogenase, alkaline phosphatase and aspartate aminotransferase exercise of subclinical mastitis as and indicator of subclinical mastitis in riverine buffalo (Bubalus bubalis). Asian-Australas. J. Anim. Sci. 25, 353–360 (2012).
Guccione, J. et al. Quick communication: Position of Streptococcus pluranimalium in Mediterranean buffaloes (Bubalus bubalis) with completely different udder well being statuses. J. Dairy Sci. 99, 2945–2949 (2016).
Catozzi, C. et al. The microbiota of water buffalo milk throughout mastitis. PLoS ONE 12, 1–20 (2017).
Catozzi, C. et al. Affect of intramammary inoculation of inactivated Lactobacillus rhamnosus and antibiotics on the milk microbiota of water buffalo with subclinical mastitis. PLoS ONE 14, e0210204 (2019).
Catozzi, C. et al. Quick communication: Intra- and inter-individual milk microbiota variability in wholesome and contaminated water buffalo udder quarters. J. Dairy Sci. 102, 7476–7482 (2019).
Catozzi, C. et al. Quick communication: Milk microbiota profiling on water buffalo with full-length 16S rRNA utilizing nanopore sequencing. J. Dairy Sci. 103, 2693–2700 (2020).
Bernardi, N. et al. A fast high-performance liquid chromatography-tandem mass spectrometry assay for unambiguous detection of various milk species employed in cheese manufacturing. J. Dairy Sci. 98, 8405–8413 (2015).
Brijesha, N. & Aparna, H. S. Complete characterization of bioactive peptides from Buffalo (Bubalus bubalis) colostrum and milk fats globule membrane proteins. Meals Res. Int. 97, 95–103 (2017).
Dal Bosco, C. et al. Screening and evaluation of low-molecular-weight biomarkers of milk from cow and water buffalo: an alternate method for the fast identification of adulterated water buffalo mozzarellas. J. Agric. Meals Chem. 66, 5410–5417 (2018).
Pisanu, S. et al. Proteomic modifications within the milk of water buffaloes (Bubalus bubalis) with subclinical mastitis on account of intramammary an infection by Staphylococcus aureus and by non-aureus staphylococci. Sci. Rep. 9, 15850 (2019).
Tanamati, F. et al. Quick communication: Characterization of the milk protein expression profiles in dairy buffaloes with and with out subclinical mastitis. J. Dairy Sci. 103, 2677–2684 (2020).
Ahlawat, S. et al. Comparative gene expression profiling of milk somatic cells of Sahiwal cattle and Murrah buffaloes. Gene 764, 145101 (2021).
Salzano, A. et al. A preliminary examine on metabolome profiles of buffalo milk and corresponding mozzarella cheese: safeguarding the authenticity and traceability of protected standing buffalo dairy merchandise. Molecules 25, 304 (2020).
de Nicola, D. et al. Milk metabolomics reveals potential biomarkers for early prediction of being pregnant in buffaloes having undergone synthetic insemination. Animals 10, 758 (2020).
Sordillo, L. M. Symposium assessment: oxylipids and the regulation of bovine mammary inflammatory responses. J. Dairy Sci. 101, 5629–5641 (2018).
Contreras, G. A. & Sordillo, L. M. Lipid mobilization and inflammatory responses in the course of the transition interval of dairy cows. Comp. Immunol. Microbiol. Infect. Dis. 34, 281–289 (2011).
Genovese, A. et al. Risky natural compound and fatty acid profile of milk from cows and buffaloes fed mycorrhizal or nonmycorrhizal ensiled forage. Molecules 24, 1616 (2019).
Sacchi, R. et al. Results of inclusion of recent forage within the food plan for lactating buffaloes on risky natural compounds of milk and Mozzarella cheese. Molecules 25, 1332 (2020).
Zou, X. et al. Lipid composition evaluation of milk fat from completely different mammalian species: potential to be used as human milk fats substitutes. J. Agric. Meals Chem. 61, 7070–7080 (2013).
Pegolo, S. et al. Components affecting variations within the detailed fatty acid profile of Mediterranean buffalo milk decided by 2-dimensional gasoline chromatography. J. Dairy Sci. 100, 2564–2576 (2017).
Shi, W. et al. LC-MS/MS primarily based metabolomics reveal candidate biomarkers and metabolic modifications in several buffalo species. Animals 11, 560 (2021).
Bernard, L. et al. Milk fats globule in ruminant: main and minor compounds, dietary regulation and variations amongst species. Eur. J. Lipid Sci. Technol. 120, 1700039 (2018).
Jensen, R. G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85, 295–350 (2002).
Ceciliani, F. et al. The untargeted lipidomic profile of quarter milk from dairy cows with subclinical intramammary an infection by non-aureus staphylococci. J. Dairy Sci. https://doi.org/10.3168/jds.2020-19975 (2021).
Toral, P. G., Bernard, L., Chilliard, Y. & Glasser, F. Quick communication: Food regimen-induced variations in milk fatty acid composition have minor results on the estimated melting level of milk fats in cows, goats, and ewes: insights from a meta-analysis. J. Dairy Sci. 96, 1232–1236 (2013).
Arana, L., Gangoiti, P., Ouro, A., Trueba, M. & Gómez-Muñoz, A. Ceramide and ceramide 1-phosphate in well being and illness. Lipids Well being Dis 9, 1–2 (2010).
Gómez-Muñoz, A. et al. Ceramide-1-phosphate promotes cell survival by means of activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett. 579, 3744–3750 (2005).
Chalfant, C. E. & Spiegel, S. Sphingosine 1-phosphate and ceramide 1-phosphate: increasing roles in cell signaling. J. Cell Sci. 118, 4605–4612 (2005).
Petrusca, D. N. et al. Sphingolipid-mediated inhibition of apoptotic cell clearance by alveolar macrophages. J. Biol. Chem. 285, 40322–40332 (2010).
Kamocki, Ok. et al. RTP801 is required for ceramide-induced cell-specific loss of life within the murine lung. Am. J. Respir. Cell Mol. Biol. 48, 87–93 (2013).
Pettus, B. J. et al. Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid launch. J. Biol. Chem. 278, 38206–38213 (2003).
Hinkovska-Galcheva, V. et al. Ceramide 1-phosphate, a mediator of phagocytosis. J. Biol. Chem. 280, 26612–26621 (2005).
Mitsutake, S. et al. Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J. Biol. Chem. 279, 17570–17577 (2004).
Arana, L. et al. Ceramide 1-phosphate induces macrophage chemoattractant protein-1 launch: involvement in ceramide 1-phosphate-stimulated cell migration. Am. J. Physiol. Endocrinol. Metab. 304, E1213 (2013).
Baudiß, Ok. et al. C1P attenuates lipopolysaccharide-induced acute lung harm by stopping NF-κB activation in neutrophils. J. Immunol. 196, 2319–2326 (2016).
Wants, E. C. & Anderson, M. Lipid composition of milks from cows with experimentally induced mastitis. J. Dairy Res. 51, 239–249 (1984).
Murphy, S. C. et al. Affect of bovine mastitis on lipolysis ond proteolysis in milk. J. Dairy Sci. 72, 620–626 (1989).
Vidanarachchi, J. Ok., Li, S., Lundh, Å. S. & Johansson, M. Quick communication: Lipolytic exercise on milk fats by Staphylococcus aureus and Streptococcus agalactiae strains generally remoted in Swedish dairy herds. J. Dairy Sci. 98, 8560–8564 (2015).
Ali, T. et al. Prevalence of mastitis pathogens and antimicrobial susceptibility of isolates from cattle and buffaloes in Northwest of Pakistan. Entrance. Vet. Sci. 8, 1148 (2021).
Berry, D. P. & Meaney, W. J. Interdependence and distribution of subclinical mastitis and intramammary an infection amongst udder quarters in dairy cattle. Prev. Vet. Med. 75, 81–91 (2006).
Akers, R. M. & Nickerson, S. C. Mastitis and its impression on construction and performance within the ruminant mammary gland. J. Mammary Gland Biol. Neoplasia 16, 275–289 (2011).
Blagitz, M. G. et al. Stream cytometric evaluation: Interdependence of wholesome and contaminated udder quarters. J. Dairy Sci. 98, 2401–2408 (2015).
Paixão, M. G., Abreu, L. R., Richert, R. & Ruegg, P. L. Milk composition and well being standing from mammary gland quarters adjoining to glands affected with naturally occurring scientific mastitis. J. Dairy Sci. 100, 7522–7533 (2017).
Heimes, A. et al. Cows chosen for divergent mastitis susceptibility show a differential liver transcriptome profile after experimental Staphylococcus aureus mammary gland inoculation. J. Dairy Sci. 103, 6364–6373 (2020).
Niedziela, D. A., Murphy, M. P., Grant, J., Keane, O. M. & Leonard, F. C. Scientific presentation and immune traits in first-lactation Holstein-Friesian cows following intramammary an infection with genotypically distinct Staphylococcus aureus strains. J. Dairy Sci. 103, 8453–8466 (2020).
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Enhancing bioscience analysis reporting: the ARRIVE pointers for reporting animal analysis. PLoS Biol. 8, e1000412 (2010).
Middleton, J. R., Fox, L. Ok. & Pighetti, G. Laboratory Handbook on Bovine Mastitis (Nationwide Mastitis Council, Madison, WI, 2017).
Dohoo, I. R., Smith, J., Andersen, S., Kelton, D. F. & Godden, S. Diagnosing intramammary infections: analysis of definitions primarily based on a single milk pattern. J. Dairy Sci. 94, 250–261 (2011).
Folch, J., Lees, M. & Sloane Stanley, G. H. A easy technique for the isolation and purification of whole lipides from animal tissues. J. Biol. Chem. https://doi.org/10.3989/scimar.2005.69n187 (1957).
Wang, L. et al. Comparative lipidomics evaluation of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Meals Chem. 310, 125865 (2020).
Chong, J., Wishart, D. S. & Xia, J. Utilizing MetaboAnalyst 4.0 for complete and integrative metabolomics knowledge evaluation. Curr. Protoc. Bioinform. https://doi.org/10.1002/cpbi.86 (2019).
Ghaffari, M. H. et al. Metabolomics meets machine studying: longitudinal metabolite profiling in serum of regular versus overconditioned cows and pathway evaluation. J. Dairy Sci. https://doi.org/10.3168/jds.2019-17114 (2019).
[ad_2]