Tuesday, May 30, 2023
No menu items!
HomeMicrobiologyModifications within the lipidome of water buffalo milk throughout intramammary an infection...

Modifications within the lipidome of water buffalo milk throughout intramammary an infection by non-aureus Staphylococci

[ad_1]

  • Minervino, A. H. H., Zava, M., Vecchio, D. & Borghese, A. Bubalus bubalis: a brief story. Entrance. Vet. Sci. 7, 570413 (2020).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Fagiolo, A. & Lai, O. Mastitis in buffalo. Ital. J. Anim. Sci. 6, 200–206 (2007).

    Article 

    Google Scholar
     

  • Guccione, J. et al. Antibiotic dry buffalo remedy: impact of intramammary administration of benzathine cloxacillin towards Staphylococcus aureus mastitis in dairy water buffalo. BMC Vet. Res. 16, 191 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moroni, P. et al. Relationships between somatic cell depend and intramammary an infection in buffaloes. J. Dairy Sci. 89, 998–1003 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dhakal, I. P., Dhakal, P., Koshihara, T. & Nagahata, H. Epidemiological and bacteriological survey of buffalo mastitis in Nepal. J. Vet. Med. Sci. 69, 1241–1245 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Locatelli, C. et al. Impact on quarter milk somatic cell depend and antimicrobial susceptibility of Staphylococcus rostri inflicting intramammary an infection in dairy water buffaloes. J. Dairy Sci. 96, 3799–3805 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Oliveira Moura, E. et al. Analysis of microbiological, mobile and threat elements related to subclinical mastitis in feminine buffaloes. Asian-Australas. J. Anim. Sci. 30, 1340–1349 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • El-Ashker, M. et al. Microarray-based detection of resistance genes in coagulase-negative staphylococci remoted from cattle and buffalo with mastitis in Egypt. Trop. Anim. Well being Prod. 52, 3855–3862 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Aqib, A. I. et al. Antibiotic susceptibilities and prevalence of Methicillin resistant Staphylococcus aureus (MRSA) remoted from bovine milk in Pakistan. Acta Trop. 176, 168–172 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Badua, A. T., Boonyayatra, S., Awaiwanont, N., Gaban, P. B. V. & Mingala, C. N. Antibiotic resistance and genotyping of mecA-positive methicillin-resistant Staphylococcus aureus (MRSA) from milk and nasal carriage of dairy water buffaloes (Bubalus bubalis) within the Philippines. J. Adv. Vet. Anim. Res. 7, 397–406 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Badua, A. T., Boonyayatra, S., Awaiwanont, N., Gaban, P. B. V. & Mingala, C. N. Methicillin-resistant Staphylococcus aureus (MRSA) related to mastitis amongst water buffaloes within the Philippines. Heliyon 6, e05663 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Singha, S. et al. Incidence and aetiology of subclinical mastitis in water buffalo in Bangladesh. J. Dairy Res. 88, 314–320 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guha, A., Gera, S. & Sharma, A. Analysis of milk hint parts, lactate dehydrogenase, alkaline phosphatase and aspartate aminotransferase exercise of subclinical mastitis as and indicator of subclinical mastitis in riverine buffalo (Bubalus bubalis). Asian-Australas. J. Anim. Sci. 25, 353–360 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guccione, J. et al. Quick communication: Position of Streptococcus pluranimalium in Mediterranean buffaloes (Bubalus bubalis) with completely different udder well being statuses. J. Dairy Sci. 99, 2945–2949 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Catozzi, C. et al. The microbiota of water buffalo milk throughout mastitis. PLoS ONE 12, 1–20 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Catozzi, C. et al. Affect of intramammary inoculation of inactivated Lactobacillus rhamnosus and antibiotics on the milk microbiota of water buffalo with subclinical mastitis. PLoS ONE 14, e0210204 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Catozzi, C. et al. Quick communication: Intra- and inter-individual milk microbiota variability in wholesome and contaminated water buffalo udder quarters. J. Dairy Sci. 102, 7476–7482 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Catozzi, C. et al. Quick communication: Milk microbiota profiling on water buffalo with full-length 16S rRNA utilizing nanopore sequencing. J. Dairy Sci. 103, 2693–2700 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bernardi, N. et al. A fast high-performance liquid chromatography-tandem mass spectrometry assay for unambiguous detection of various milk species employed in cheese manufacturing. J. Dairy Sci. 98, 8405–8413 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brijesha, N. & Aparna, H. S. Complete characterization of bioactive peptides from Buffalo (Bubalus bubalis) colostrum and milk fats globule membrane proteins. Meals Res. Int. 97, 95–103 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dal Bosco, C. et al. Screening and evaluation of low-molecular-weight biomarkers of milk from cow and water buffalo: an alternate method for the fast identification of adulterated water buffalo mozzarellas. J. Agric. Meals Chem. 66, 5410–5417 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pisanu, S. et al. Proteomic modifications within the milk of water buffaloes (Bubalus bubalis) with subclinical mastitis on account of intramammary an infection by Staphylococcus aureus and by non-aureus staphylococci. Sci. Rep. 9, 15850 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tanamati, F. et al. Quick communication: Characterization of the milk protein expression profiles in dairy buffaloes with and with out subclinical mastitis. J. Dairy Sci. 103, 2677–2684 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahlawat, S. et al. Comparative gene expression profiling of milk somatic cells of Sahiwal cattle and Murrah buffaloes. Gene 764, 145101 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Salzano, A. et al. A preliminary examine on metabolome profiles of buffalo milk and corresponding mozzarella cheese: safeguarding the authenticity and traceability of protected standing buffalo dairy merchandise. Molecules 25, 304 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • de Nicola, D. et al. Milk metabolomics reveals potential biomarkers for early prediction of being pregnant in buffaloes having undergone synthetic insemination. Animals 10, 758 (2020).

    PubMed Central 
    Article 

    Google Scholar
     

  • Sordillo, L. M. Symposium assessment: oxylipids and the regulation of bovine mammary inflammatory responses. J. Dairy Sci. 101, 5629–5641 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Contreras, G. A. & Sordillo, L. M. Lipid mobilization and inflammatory responses in the course of the transition interval of dairy cows. Comp. Immunol. Microbiol. Infect. Dis. 34, 281–289 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Genovese, A. et al. Risky natural compound and fatty acid profile of milk from cows and buffaloes fed mycorrhizal or nonmycorrhizal ensiled forage. Molecules 24, 1616 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sacchi, R. et al. Results of inclusion of recent forage within the food plan for lactating buffaloes on risky natural compounds of milk and Mozzarella cheese. Molecules 25, 1332 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zou, X. et al. Lipid composition evaluation of milk fat from completely different mammalian species: potential to be used as human milk fats substitutes. J. Agric. Meals Chem. 61, 7070–7080 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pegolo, S. et al. Components affecting variations within the detailed fatty acid profile of Mediterranean buffalo milk decided by 2-dimensional gasoline chromatography. J. Dairy Sci. 100, 2564–2576 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi, W. et al. LC-MS/MS primarily based metabolomics reveal candidate biomarkers and metabolic modifications in several buffalo species. Animals 11, 560 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bernard, L. et al. Milk fats globule in ruminant: main and minor compounds, dietary regulation and variations amongst species. Eur. J. Lipid Sci. Technol. 120, 1700039 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jensen, R. G. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85, 295–350 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ceciliani, F. et al. The untargeted lipidomic profile of quarter milk from dairy cows with subclinical intramammary an infection by non-aureus staphylococci. J. Dairy Sci. https://doi.org/10.3168/jds.2020-19975 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Toral, P. G., Bernard, L., Chilliard, Y. & Glasser, F. Quick communication: Food regimen-induced variations in milk fatty acid composition have minor results on the estimated melting level of milk fats in cows, goats, and ewes: insights from a meta-analysis. J. Dairy Sci. 96, 1232–1236 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arana, L., Gangoiti, P., Ouro, A., Trueba, M. & Gómez-Muñoz, A. Ceramide and ceramide 1-phosphate in well being and illness. Lipids Well being Dis 9, 1–2 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Gómez-Muñoz, A. et al. Ceramide-1-phosphate promotes cell survival by means of activation of the phosphatidylinositol 3-kinase/protein kinase B pathway. FEBS Lett. 579, 3744–3750 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chalfant, C. E. & Spiegel, S. Sphingosine 1-phosphate and ceramide 1-phosphate: increasing roles in cell signaling. J. Cell Sci. 118, 4605–4612 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Petrusca, D. N. et al. Sphingolipid-mediated inhibition of apoptotic cell clearance by alveolar macrophages. J. Biol. Chem. 285, 40322–40332 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kamocki, Ok. et al. RTP801 is required for ceramide-induced cell-specific loss of life within the murine lung. Am. J. Respir. Cell Mol. Biol. 48, 87–93 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pettus, B. J. et al. Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid launch. J. Biol. Chem. 278, 38206–38213 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hinkovska-Galcheva, V. et al. Ceramide 1-phosphate, a mediator of phagocytosis. J. Biol. Chem. 280, 26612–26621 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mitsutake, S. et al. Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J. Biol. Chem. 279, 17570–17577 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arana, L. et al. Ceramide 1-phosphate induces macrophage chemoattractant protein-1 launch: involvement in ceramide 1-phosphate-stimulated cell migration. Am. J. Physiol. Endocrinol. Metab. 304, E1213 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baudiß, Ok. et al. C1P attenuates lipopolysaccharide-induced acute lung harm by stopping NF-κB activation in neutrophils. J. Immunol. 196, 2319–2326 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wants, E. C. & Anderson, M. Lipid composition of milks from cows with experimentally induced mastitis. J. Dairy Res. 51, 239–249 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murphy, S. C. et al. Affect of bovine mastitis on lipolysis ond proteolysis in milk. J. Dairy Sci. 72, 620–626 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vidanarachchi, J. Ok., Li, S., Lundh, Å. S. & Johansson, M. Quick communication: Lipolytic exercise on milk fats by Staphylococcus aureus and Streptococcus agalactiae strains generally remoted in Swedish dairy herds. J. Dairy Sci. 98, 8560–8564 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ali, T. et al. Prevalence of mastitis pathogens and antimicrobial susceptibility of isolates from cattle and buffaloes in Northwest of Pakistan. Entrance. Vet. Sci. 8, 1148 (2021).


    Google Scholar
     

  • Berry, D. P. & Meaney, W. J. Interdependence and distribution of subclinical mastitis and intramammary an infection amongst udder quarters in dairy cattle. Prev. Vet. Med. 75, 81–91 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Akers, R. M. & Nickerson, S. C. Mastitis and its impression on construction and performance within the ruminant mammary gland. J. Mammary Gland Biol. Neoplasia 16, 275–289 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Blagitz, M. G. et al. Stream cytometric evaluation: Interdependence of wholesome and contaminated udder quarters. J. Dairy Sci. 98, 2401–2408 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paixão, M. G., Abreu, L. R., Richert, R. & Ruegg, P. L. Milk composition and well being standing from mammary gland quarters adjoining to glands affected with naturally occurring scientific mastitis. J. Dairy Sci. 100, 7522–7533 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Heimes, A. et al. Cows chosen for divergent mastitis susceptibility show a differential liver transcriptome profile after experimental Staphylococcus aureus mammary gland inoculation. J. Dairy Sci. 103, 6364–6373 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niedziela, D. A., Murphy, M. P., Grant, J., Keane, O. M. & Leonard, F. C. Scientific presentation and immune traits in first-lactation Holstein-Friesian cows following intramammary an infection with genotypically distinct Staphylococcus aureus strains. J. Dairy Sci. 103, 8453–8466 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Enhancing bioscience analysis reporting: the ARRIVE pointers for reporting animal analysis. PLoS Biol. 8, e1000412 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Middleton, J. R., Fox, L. Ok. & Pighetti, G. Laboratory Handbook on Bovine Mastitis (Nationwide Mastitis Council, Madison, WI, 2017).


    Google Scholar
     

  • Dohoo, I. R., Smith, J., Andersen, S., Kelton, D. F. & Godden, S. Diagnosing intramammary infections: analysis of definitions primarily based on a single milk pattern. J. Dairy Sci. 94, 250–261 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Folch, J., Lees, M. & Sloane Stanley, G. H. A easy technique for the isolation and purification of whole lipides from animal tissues. J. Biol. Chem. https://doi.org/10.3989/scimar.2005.69n187 (1957).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Comparative lipidomics evaluation of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Meals Chem. 310, 125865 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chong, J., Wishart, D. S. & Xia, J. Utilizing MetaboAnalyst 4.0 for complete and integrative metabolomics knowledge evaluation. Curr. Protoc. Bioinform. https://doi.org/10.1002/cpbi.86 (2019).

    Article 

    Google Scholar
     

  • Ghaffari, M. H. et al. Metabolomics meets machine studying: longitudinal metabolite profiling in serum of regular versus overconditioned cows and pathway evaluation. J. Dairy Sci. https://doi.org/10.3168/jds.2019-17114 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments