Sunday, June 26, 2022
No menu items!
HomeBiotechnologyImpact of electrochemical oxidation and drug loading on the antibacterial properties and...

Impact of electrochemical oxidation and drug loading on the antibacterial properties and cell biocompatibility of titanium substrates

[ad_1]

  • de Freitas Quadros, F. et al. Preparation, structural and microstructural characterization of Ti-25Ta-10Zr alloy for biomedical functions. J. Market. Res. 8(5), 4108–4114 (2019).


    Google Scholar
     

  • Chowdhury, P. R. Floor Modification of Titanium for Orthopedic and Drug Supply Functions (Northern Illinois College, 2020).


    Google Scholar
     

  • Van den Borre, C. E. et al. How floor coatings on titanium implants have an effect on keratinized tissue: A scientific overview. J. Biomed. Mater. Res. Half B: Appl. Biomater. (2022).

  • Wu, J. et al. Development components enhanced angiogenesis and osteogenesis on polydopamine coated titanium floor for bone regeneration. Mater. Des. 196, 109162 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Nicholson, W. J. Titanium alloys for dental implants: A overview. Prosthesis 2(2), 100–116 (2020).

    Article 

    Google Scholar
     

  • Khodaei, M. et al. Floor therapy of titanium dental implant with H 2 O 2 resolution. Int. J. Miner. Metall. Mater. 27(9), 1281–1286 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yu, Y. et al. Enzyme responsive titanium substrates with antibacterial property and osteo/angio-genic differentiation potentials. Colloids Surf., B 185, 110592 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, L.-C., Chen, L.-Y. & Wang, L. Floor modification of titanium and titanium alloys: Applied sciences, developments, and future pursuits. Adv. Eng. Mater. 22(5), 1901258 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, X. et al. Floor therapies on titanium implants by way of nanostructured ceria for antibacterial and anti inflammatory capabilities. Acta Biomater. 94, 627–643 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, Ok. T. et al. Normal overview of titanium toxicity. Int. J. Implant Dentis. 5(1), 10 (2019).

    Article 

    Google Scholar
     

  • Wang, M. & Tang, T. Floor therapy methods to fight implant-related an infection from the start. J. Orthopaedic Transl. 17, 42–54 (2019).

    Article 

    Google Scholar
     

  • Ahmadiyan, S. et al. Antibacterial exercise and biocompatibility of Ag-coated Ti implants: Significance of floor modification parameters. Trans. IMF 1–10 (2022).

  • Hong, L. et al. Speedy biofilm elimination on bone implants utilizing near-infrared-activated inorganic semiconductor heterostructures. Adv. Healthcare Mater. 8(19), 1900835 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Niu, X. et al. Fabrication and antibacterial properties of cefuroxime-loaded TiO 2 nanotubes. Appl. Microbiol. Biotechnol. 104(7), 2947–2955 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma, X. et al. Titanium implants and native drug supply methods change into mutual promoters in orthopedic clinics. Nanomaterials 12(1), 47 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Li, Y. et al. Close to-infrared mild triggered phototherapy and immunotherapy for elimination of methicillin-resistant staphylococcus aureus biofilm an infection on bone implant. ACS Nano 14(7), 8157–8170 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Caplin, J. D. & García, A. J. Implantable antimicrobial biomaterials for native drug supply in bone an infection fashions. Acta Biomater. 93, 2–11 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kates, S. L., Hurni, S. & Chen, M. S. Growth and challenges in organising a global bone an infection registry. Arch. Orthopaedic Trauma Surg. 140, 1–9 (2019).


    Google Scholar
     

  • Krok, E. et al. Modification of titanium implants utilizing biofunctional nanodiamonds for enhanced antimicrobial properties. Nanotechnology 31(20), 205603 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Tao, B. et al. Floor modification of titanium implants by [email protected] Levo/LBL coating for inhibition of bacterial-associated an infection and enhancement of in vivo osseointegration. Chem. Eng. J. 390, 124621 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Thukkaram, M. et al. Fabrication of microporous coatings on titanium implants with improved mechanical, antibacterial, and cell-interactive properties. ACS Appl. Mater. Interfaces. 12(27), 30155–30169 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tao, B. et al. Fabrication of gelatin-based and Zn2+-incorporated composite hydrogel for accelerated contaminated wound therapeutic. Mater. At the moment Bio. 13, 100216 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tao, B. et al. Fabrication of copper ions-substituted hydroxyapatite/polydopamine nanocomposites with excessive antibacterial and angiogenesis results for selling contaminated wound therapeutic. J. Ind. Eng. Chem. 104, 345–355 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, Ok. et al. Gallium (Ga)–strontium (Sr) layered double hydroxide composite coating on titanium substrates for enhanced osteogenic and antibacterial skills. J. Biomed. Mater. Res., Half A 110(2), 273–286 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tao, B. et al. Osteoimmunomodulation mediating improved osteointegration by OGP-loaded cobalt-metal natural framework on titanium implants with antibacterial property. Chem. Eng. J. 423, 130176 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. et al. Hydrodynamic management of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells. Mater. Sci. Eng., C 109, 110562 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Brammer, Ok. S. et al. Biomaterials and biotechnology schemes using TiO2 nanotube arrays. Biomater. Sci. Eng. 193–210 (2011).

  • Lin, Q. et al. Nano-hydroxyapatite crystal formation primarily based on calcified TiO2 nanotube arrays. Appl. Surf. Sci. 478, 237–246 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Zhang, G. et al. A multifunctional antibacterial coating on bone implants for osteosarcoma remedy and enhanced osteointegration. Chem. Eng. J. 428, 131155 (2022).

    CAS 
    Article 

    Google Scholar
     

  • İzmir, M. & Ercan, B. Anodization of titanium alloys for orthopedic functions. Entrance. Chem. Sci. Eng. 13(1), 28–45 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mohan, L., Anandan, C. & Rajendran, N. Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ resolution for biomedical functions. Electrochim. Acta 155, 411–420 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Saharudin, Ok. A. et al. Floor modification and bioactivity of anodic Ti6Al4V alloy. J. Nanosci. Nanotechnol. 13(3), 1696–1705 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Indira, Ok., Mudali, U. Ok. & Rajendran, N. In-vitro biocompatibility and corrosion resistance of strontium integrated TiO2 nanotube arrays for orthopaedic functions. J. Biomater. Appl. 29(1), 113–129 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shen, Ok. et al. The sustained launch of dexamethasone from TiO2 nanotubes strengthened by chitosan to boost osteoblast operate and anti-inflammation exercise. Mater. Sci. Eng., C 116, 111241 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, F., Xie, C. & Xiao, X. pH-responsive launch of TiO2 nanotube arrays/mesoporous silica composite primarily based on tannic acid-Fe (III) advanced coating. Micro & Nano Letters 15(12), 797–801 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Fathi, M., Akbari, B. & Taheriazam, A. Antibiotics drug launch controlling and osteoblast adhesion from Titania nanotubes arrays utilizing silk fibroin coating. Mater. Sci. Eng., C 103, 109743 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Y. et al. pH-responsive TiO2 nanotube drug supply system primarily based on iron coordination. J. Nanomater. (2019).

  • Li, Z. et al. Rising vertical aligned mesoporous silica skinny movie on nanoporous substrate for enhanced degradation, drug supply and bioactivity. Bioact. Mater. 6(5), 1452–1463 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmadabadi, H. Y., Yu, Ok. & Kizhakkedathu, J. N. Floor modification approaches for prevention of implant related infections. Colloids Surf. B Biointerfaces 193, 111116 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • You, Ok. et al. Versatile polymer-based methods for antibacterial drug supply methods and antibacterial coatings. J. Mater. Chem. B (2022).

  • Kunrath, M. F. et al. Antibacterial potential related to drug-delivery constructed TiO 2 nanotubes in biomedical implants. AMB Categorical 9(1), 51 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gunputh, U. F. & Le, H. A overview of in-situ grown nanocomposite coatings for titanium alloy implants. J. Compos. Sci. 4(2), 41 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Sasireka, A., Rajendran, R. & Raj, V. In vitro corrosion resistance and cytocompatibility of minerals substituted apatite/biopolymers duplex coatings on anodized Ti for orthopedic implant functions. Arab. J. Chem. 13(8), 6312–6326 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jariya, S. I., Ravichandran, Ok. & Narayanan, T. S. Growth of novel multi-functional composite coatings on titanium: Analysis of structural traits, bioactivity and corrosion behaviour. J. Alloys Comp. 855, 157290 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wei, L. et al. Twin-drug supply system primarily based on hydrogel/micelle composites. Biomaterials 30(13), 2606–2613 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jaipan, P., Nguyen, A. & Narayan, R. J. Gelatin-based hydrogels for biomedical functions. Mrs Commun. 7(3), 416–426 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Khorshidi, S. et al. Electrospun fibroin/graphene oxide nanocomposite mats: An optimization for potential wound dressing functions. Fibers Polym. 21(3), 480–488 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ghasemi, A. et al. Finding out the potential software of electrospun polyethylene terephthalate/graphene oxide nanofibers as electroconductive cardiac patch. Macromol. Mater. Eng. 304(8), 1900187 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shang, L. et al. Graphene and graphene oxide for tissue engineering and regeneration, in Theranostic Bionanomaterials. 165–185 (Elsevier, 2019).

  • Wang, C. et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating. ACS Appl. Mater. Interfaces. 11(43), 39470–39483 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shin, Y. C. et al. Enhanced osseointegration of dental implants with decreased graphene oxide coating (2022).

  • Pooshidani, Y., Ghofrani, R. & Shabani, I. Nanostructured self-healing polymers and composites, in Fundamentals of Nanoparticles. 401-423 (Elsevier, 2018).

  • Cong, Y., Yang, S. & Rao, X. Vancomycin resistant Staphylococcus aureus infections: A overview of case updating and medical options. J. Adv. Res. 21, 169–176 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Zirak, N. et al. Fabrication, drug supply kinetics and cell viability assay of PLGA-coated vancomycin-loaded silicate porous microspheres. Ceram. Int. 48(1), 48–54 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Swanson, T., Cheng, X. & Friedrich, C. Growth of chitosan–vancomycin antimicrobial coatings on titanium implants. J. Biomed. Mater. Res., Half A 97(2), 167–176 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Noel, S. P. et al. Chitosan sponges to regionally ship amikacin and vancomycin: A pilot in vitro analysis. Clin. Orthopaedics Relat. Res. 468(8), 2074–2080 (2010).

    Article 

    Google Scholar
     

  • Joosten, U. et al. Effectiveness of hydroxyapatite-vancomycin bone cement within the therapy of Staphylococcus aureus induced power osteomyelitis. Biomaterials 26(25), 5251–5258 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loc-Carrillo, C. et al. Native intramedullary supply of vancomycin can forestall the event of lengthy bone Staphylococcus aureus an infection. PLoS ONE 11(7), e0160187 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Improved antibacterial exercise and biocompatibility on vancomycin-loaded TiO2 nanotubes: In vivo and in vitro research. Int. J. Nanomed. 8, 4379 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nayak, T. R. et al. Graphene for managed and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6), 4670–4678 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kang, M. S. et al. Decreased graphene oxide coating enhances osteogenic differentiation of human mesenchymal stem cells on Ti surfaces. Biomater. Res. 25(1), 1–9 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Electrophoretic deposition of graphene oxide strengthened chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. J. Mater. Sci. – Mater. Med. 27(3), 48 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jariya, S. I., Ravichandran, Ok. & Narayanan, T. S. Growth of novel multi-functional composite coatings on titanium: Analysis of structural traits, bioactivity and corrosion behaviour. J. Alloy. Compd. 855, 157290 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Camargo, W. A. et al. Impact of floor alkali-based therapy of titanium implants on potential to advertise in vitro mineralization and in vivo bone formation. Acta Biomater. 57, 511–523 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, Z. et al. Development of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the floor self-antibacterial exercise and cytocompatibility. Colloids Surf., B 151, 165–177 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Zhang, L. et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int. J. Nanomed. 9, 3027 (2014).

    CAS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments