[ad_1]
de Freitas Quadros, F. et al. Preparation, structural and microstructural characterization of Ti-25Ta-10Zr alloy for biomedical functions. J. Market. Res. 8(5), 4108–4114 (2019).
Chowdhury, P. R. Floor Modification of Titanium for Orthopedic and Drug Supply Functions (Northern Illinois College, 2020).
Van den Borre, C. E. et al. How floor coatings on titanium implants have an effect on keratinized tissue: A scientific overview. J. Biomed. Mater. Res. Half B: Appl. Biomater. (2022).
Wu, J. et al. Development components enhanced angiogenesis and osteogenesis on polydopamine coated titanium floor for bone regeneration. Mater. Des. 196, 109162 (2020).
Nicholson, W. J. Titanium alloys for dental implants: A overview. Prosthesis 2(2), 100–116 (2020).
Khodaei, M. et al. Floor therapy of titanium dental implant with H 2 O 2 resolution. Int. J. Miner. Metall. Mater. 27(9), 1281–1286 (2020).
Yu, Y. et al. Enzyme responsive titanium substrates with antibacterial property and osteo/angio-genic differentiation potentials. Colloids Surf., B 185, 110592 (2020).
Zhang, L.-C., Chen, L.-Y. & Wang, L. Floor modification of titanium and titanium alloys: Applied sciences, developments, and future pursuits. Adv. Eng. Mater. 22(5), 1901258 (2020).
Li, X. et al. Floor therapies on titanium implants by way of nanostructured ceria for antibacterial and anti inflammatory capabilities. Acta Biomater. 94, 627–643 (2019).
Kim, Ok. T. et al. Normal overview of titanium toxicity. Int. J. Implant Dentis. 5(1), 10 (2019).
Wang, M. & Tang, T. Floor therapy methods to fight implant-related an infection from the start. J. Orthopaedic Transl. 17, 42–54 (2019).
Ahmadiyan, S. et al. Antibacterial exercise and biocompatibility of Ag-coated Ti implants: Significance of floor modification parameters. Trans. IMF 1–10 (2022).
Hong, L. et al. Speedy biofilm elimination on bone implants utilizing near-infrared-activated inorganic semiconductor heterostructures. Adv. Healthcare Mater. 8(19), 1900835 (2019).
Niu, X. et al. Fabrication and antibacterial properties of cefuroxime-loaded TiO 2 nanotubes. Appl. Microbiol. Biotechnol. 104(7), 2947–2955 (2020).
Ma, X. et al. Titanium implants and native drug supply methods change into mutual promoters in orthopedic clinics. Nanomaterials 12(1), 47 (2022).
Li, Y. et al. Close to-infrared mild triggered phototherapy and immunotherapy for elimination of methicillin-resistant staphylococcus aureus biofilm an infection on bone implant. ACS Nano 14(7), 8157–8170 (2020).
Caplin, J. D. & García, A. J. Implantable antimicrobial biomaterials for native drug supply in bone an infection fashions. Acta Biomater. 93, 2–11 (2019).
Kates, S. L., Hurni, S. & Chen, M. S. Growth and challenges in organising a global bone an infection registry. Arch. Orthopaedic Trauma Surg. 140, 1–9 (2019).
Krok, E. et al. Modification of titanium implants utilizing biofunctional nanodiamonds for enhanced antimicrobial properties. Nanotechnology 31(20), 205603 (2020).
Tao, B. et al. Floor modification of titanium implants by [email protected] Levo/LBL coating for inhibition of bacterial-associated an infection and enhancement of in vivo osseointegration. Chem. Eng. J. 390, 124621 (2020).
Thukkaram, M. et al. Fabrication of microporous coatings on titanium implants with improved mechanical, antibacterial, and cell-interactive properties. ACS Appl. Mater. Interfaces. 12(27), 30155–30169 (2020).
Tao, B. et al. Fabrication of gelatin-based and Zn2+-incorporated composite hydrogel for accelerated contaminated wound therapeutic. Mater. At the moment Bio. 13, 100216 (2022).
Tao, B. et al. Fabrication of copper ions-substituted hydroxyapatite/polydopamine nanocomposites with excessive antibacterial and angiogenesis results for selling contaminated wound therapeutic. J. Ind. Eng. Chem. 104, 345–355 (2021).
Li, Ok. et al. Gallium (Ga)–strontium (Sr) layered double hydroxide composite coating on titanium substrates for enhanced osteogenic and antibacterial skills. J. Biomed. Mater. Res., Half A 110(2), 273–286 (2022).
Tao, B. et al. Osteoimmunomodulation mediating improved osteointegration by OGP-loaded cobalt-metal natural framework on titanium implants with antibacterial property. Chem. Eng. J. 423, 130176 (2021).
Li, J. et al. Hydrodynamic management of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells. Mater. Sci. Eng., C 109, 110562 (2020).
Brammer, Ok. S. et al. Biomaterials and biotechnology schemes using TiO2 nanotube arrays. Biomater. Sci. Eng. 193–210 (2011).
Lin, Q. et al. Nano-hydroxyapatite crystal formation primarily based on calcified TiO2 nanotube arrays. Appl. Surf. Sci. 478, 237–246 (2019).
Zhang, G. et al. A multifunctional antibacterial coating on bone implants for osteosarcoma remedy and enhanced osteointegration. Chem. Eng. J. 428, 131155 (2022).
İzmir, M. & Ercan, B. Anodization of titanium alloys for orthopedic functions. Entrance. Chem. Sci. Eng. 13(1), 28–45 (2019).
Mohan, L., Anandan, C. & Rajendran, N. Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ resolution for biomedical functions. Electrochim. Acta 155, 411–420 (2015).
Saharudin, Ok. A. et al. Floor modification and bioactivity of anodic Ti6Al4V alloy. J. Nanosci. Nanotechnol. 13(3), 1696–1705 (2013).
Indira, Ok., Mudali, U. Ok. & Rajendran, N. In-vitro biocompatibility and corrosion resistance of strontium integrated TiO2 nanotube arrays for orthopaedic functions. J. Biomater. Appl. 29(1), 113–129 (2014).
Shen, Ok. et al. The sustained launch of dexamethasone from TiO2 nanotubes strengthened by chitosan to boost osteoblast operate and anti-inflammation exercise. Mater. Sci. Eng., C 116, 111241 (2020).
Zhang, F., Xie, C. & Xiao, X. pH-responsive launch of TiO2 nanotube arrays/mesoporous silica composite primarily based on tannic acid-Fe (III) advanced coating. Micro & Nano Letters 15(12), 797–801 (2020).
Fathi, M., Akbari, B. & Taheriazam, A. Antibiotics drug launch controlling and osteoblast adhesion from Titania nanotubes arrays utilizing silk fibroin coating. Mater. Sci. Eng., C 103, 109743 (2019).
Liu, Y. et al. pH-responsive TiO2 nanotube drug supply system primarily based on iron coordination. J. Nanomater. (2019).
Li, Z. et al. Rising vertical aligned mesoporous silica skinny movie on nanoporous substrate for enhanced degradation, drug supply and bioactivity. Bioact. Mater. 6(5), 1452–1463 (2021).
Ahmadabadi, H. Y., Yu, Ok. & Kizhakkedathu, J. N. Floor modification approaches for prevention of implant related infections. Colloids Surf. B Biointerfaces 193, 111116 (2020).
You, Ok. et al. Versatile polymer-based methods for antibacterial drug supply methods and antibacterial coatings. J. Mater. Chem. B (2022).
Kunrath, M. F. et al. Antibacterial potential related to drug-delivery constructed TiO 2 nanotubes in biomedical implants. AMB Categorical 9(1), 51 (2019).
Gunputh, U. F. & Le, H. A overview of in-situ grown nanocomposite coatings for titanium alloy implants. J. Compos. Sci. 4(2), 41 (2020).
Sasireka, A., Rajendran, R. & Raj, V. In vitro corrosion resistance and cytocompatibility of minerals substituted apatite/biopolymers duplex coatings on anodized Ti for orthopedic implant functions. Arab. J. Chem. 13(8), 6312–6326 (2020).
Jariya, S. I., Ravichandran, Ok. & Narayanan, T. S. Growth of novel multi-functional composite coatings on titanium: Analysis of structural traits, bioactivity and corrosion behaviour. J. Alloys Comp. 855, 157290 (2021).
Wei, L. et al. Twin-drug supply system primarily based on hydrogel/micelle composites. Biomaterials 30(13), 2606–2613 (2009).
Jaipan, P., Nguyen, A. & Narayan, R. J. Gelatin-based hydrogels for biomedical functions. Mrs Commun. 7(3), 416–426 (2017).
Khorshidi, S. et al. Electrospun fibroin/graphene oxide nanocomposite mats: An optimization for potential wound dressing functions. Fibers Polym. 21(3), 480–488 (2020).
Ghasemi, A. et al. Finding out the potential software of electrospun polyethylene terephthalate/graphene oxide nanofibers as electroconductive cardiac patch. Macromol. Mater. Eng. 304(8), 1900187 (2019).
Shang, L. et al. Graphene and graphene oxide for tissue engineering and regeneration, in Theranostic Bionanomaterials. 165–185 (Elsevier, 2019).
Wang, C. et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating. ACS Appl. Mater. Interfaces. 11(43), 39470–39483 (2019).
Shin, Y. C. et al. Enhanced osseointegration of dental implants with decreased graphene oxide coating (2022).
Pooshidani, Y., Ghofrani, R. & Shabani, I. Nanostructured self-healing polymers and composites, in Fundamentals of Nanoparticles. 401-423 (Elsevier, 2018).
Cong, Y., Yang, S. & Rao, X. Vancomycin resistant Staphylococcus aureus infections: A overview of case updating and medical options. J. Adv. Res. 21, 169–176 (2020).
Zirak, N. et al. Fabrication, drug supply kinetics and cell viability assay of PLGA-coated vancomycin-loaded silicate porous microspheres. Ceram. Int. 48(1), 48–54 (2022).
Swanson, T., Cheng, X. & Friedrich, C. Growth of chitosan–vancomycin antimicrobial coatings on titanium implants. J. Biomed. Mater. Res., Half A 97(2), 167–176 (2011).
Noel, S. P. et al. Chitosan sponges to regionally ship amikacin and vancomycin: A pilot in vitro analysis. Clin. Orthopaedics Relat. Res. 468(8), 2074–2080 (2010).
Joosten, U. et al. Effectiveness of hydroxyapatite-vancomycin bone cement within the therapy of Staphylococcus aureus induced power osteomyelitis. Biomaterials 26(25), 5251–5258 (2005).
Loc-Carrillo, C. et al. Native intramedullary supply of vancomycin can forestall the event of lengthy bone Staphylococcus aureus an infection. PLoS ONE 11(7), e0160187 (2016).
Zhang, H. et al. Improved antibacterial exercise and biocompatibility on vancomycin-loaded TiO2 nanotubes: In vivo and in vitro research. Int. J. Nanomed. 8, 4379 (2013).
Nayak, T. R. et al. Graphene for managed and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6), 4670–4678 (2011).
Kang, M. S. et al. Decreased graphene oxide coating enhances osteogenic differentiation of human mesenchymal stem cells on Ti surfaces. Biomater. Res. 25(1), 1–9 (2021).
Shi, Y. et al. Electrophoretic deposition of graphene oxide strengthened chitosan–hydroxyapatite nanocomposite coatings on Ti substrate. J. Mater. Sci. – Mater. Med. 27(3), 48 (2016).
Jariya, S. I., Ravichandran, Ok. & Narayanan, T. S. Growth of novel multi-functional composite coatings on titanium: Analysis of structural traits, bioactivity and corrosion behaviour. J. Alloy. Compd. 855, 157290 (2021).
Camargo, W. A. et al. Impact of floor alkali-based therapy of titanium implants on potential to advertise in vitro mineralization and in vivo bone formation. Acta Biomater. 57, 511–523 (2017).
Liu, Z. et al. Development of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the floor self-antibacterial exercise and cytocompatibility. Colloids Surf., B 151, 165–177 (2017).
Zhang, L. et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int. J. Nanomed. 9, 3027 (2014).
[ad_2]