Sunday, June 26, 2022
No menu items!
HomeChemistryEvaluation of mutations on RBD within the Spike protein of SARS-CoV-2 Alpha,...

Evaluation of mutations on RBD within the Spike protein of SARS-CoV-2 Alpha, Delta and Omicron variants

[ad_1]

  • Wang, D. et al. Scientific traits of 138 hospitalized sufferers with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang, C. et al. Scientific options of sufferers contaminated with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • World Well being Group. Coronavirus Illness (COVID-19) Outbreak (World Well being Group, 2020).


    Google Scholar
     

  • Wu, F. et al. A brand new coronavirus related to human respiratory illness in China. Nature 579, 265–269 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu, N. et al. A novel coronavirus from sufferers with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Osterrieder, A. et al. Financial and social impacts of COVID-19 and public well being measures: Outcomes from an nameless on-line survey in Thailand, Malaysia, the UK, Italy and Slovenia. BMJ Open 11, e046863 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Clemente-Suárez, V. J. et al. The influence of the COVID-19 pandemic on social, well being, and financial system. Sustainability 13, 6314 (2021).

    Article 
    CAS 

    Google Scholar
     

  • World Well being Group. COVID-19 Weekly Epidemiological Replace 1–23 (World Well being Group, 2021).


    Google Scholar
     

  • Fiolet, T., Kherabi, Y., MacDonald, C.-J., Ghosn, J. & Peiffer-Smadja, N. Evaluating COVID-19 vaccines for his or her traits, efficacy and effectiveness in opposition to SARS-CoV-2 and variants of concern: A story evaluate. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. https://doi.org/10.1016/j.cmi.2021.10.005 (2021).

    Article 

    Google Scholar
     

  • Alencar, C. H. et al. Excessive effectiveness of SARS-CoV-2 vaccines in decreasing COVID-19-related deaths in over 75-year-olds, Ceará State, Brazil. Trop. Med. Infect. Dis. 6, 129 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gupta, S. et al. Vaccinations in opposition to COVID-19 might have averted as much as 140,000 deaths in america. Well being Aff. (Millwood) 40, 1465–1472 (2021).

    Article 

    Google Scholar
     

  • Buchan, S. A. et al. Effectiveness of COVID-19 vaccines in opposition to Omicron or Delta an infection. medRxiv. https://doi.org/10.1101/2021.12.30.21268565 (2022).

    Article 

    Google Scholar
     

  • Eyre, D. W. et al. Impact of Covid-19 vaccination on transmission of alpha and delta variants. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2116597 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez Bernal, J. et al. Effectiveness of Covid-19 vaccines in opposition to the B.1.617.2 (Delta) variant. N. Engl. J. Med. 385, 585–594 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Dawood, A. A. Mutated COVID-19 might foretell an amazing danger for mankind sooner or later. New Microbes New Infect. 35, 100673 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Korber, B. et al. Monitoring modifications in SARS-CoV-2 spike: Proof that D614G will increase infectivity of the COVID-19 virus. Cell 182, 812-827.e19 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Villoutreix, B. O., Calvez, V., Marcelin, A.-G. & Khatib, A.-M. In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 Variants with a Focus on the ACE2-Spike RBD Interface. Int. J. Mol. Sci. 22, 1695 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • World Well being Group. Classification of Omicron 11–12 (World Well being Group, 2021).


    Google Scholar
     

  • Hodcroft, E. B. CoVariants: SARS-CoV-2 mutations and variants of curiosity (2021).

  • Hadfield, J. et al. Nextstrain: Actual-time monitoring of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, L. & Cheng, G. Sequence evaluation of the rising SARS-CoV-2 variant Omicron in South Africa. J. Med. Virol. 94, 1728–1733 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • World Well being Group. Replace on Omicron 1–5 (World Well being Group, 2021).


    Google Scholar
     

  • Pulliam, J. R. C. et al. Elevated danger of SARS-CoV-2 reinfection related to emergence of the Omicron variant in South Africa. medRxiv. https://doi.org/10.1101/2021.11.11.21266068 (2021).

    Article 

    Google Scholar
     

  • Lim, H. et al. Sizzling spot profiles of SARS-CoV-2 and human ACE2 receptor protein protein interplay obtained by density practical tight binding fragment molecular orbital methodology. Sci. Rep. 10, 16862 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, H. et al. The digestive system is a possible route of 2019-nCov an infection: A bioinformatics evaluation primarily based on single-cell transcriptomes. bioRxiv. https://doi.org/10.1101/2020.01.30.927806 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P. et al. Elevated resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 29, 747–751 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei, C. et al. Proof for a mouse origin of the SARS-CoV-2 Omicron variant. J. Genet. Genomics https://doi.org/10.1016/j.jgg.2021.12.003 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger, I. & Schaffitzel, C. The SARS-CoV-2 spike protein: Balancing stability and infectivity. Cell Res. 30, 1059–1060 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding area reveals constraints on folding and ACE2 binding. Cell 182, 1295-1310.e20 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tian, F. et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. Elife 10, e69091 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Luan, B., Wang, H. & Huynh, T. Molecular mechanism of the N501Y mutation for enhanced binding between SARS-CoV-2’s spike protein and human ACE2 receptor. bioRxiv. https://doi.org/10.1101/2021.01.04.425316 (2021).

    Article 

    Google Scholar
     

  • Meng, B. et al. Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its function within the Alpha variant B.1.1.7. Cell Rep. 35, 109292 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lan, J. et al. Construction of the SARS-CoV-2 spike receptor-binding area certain to the ACE2 receptor. Nature 581, 215–220 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, F., Li, W., Farzan, M. & Harrison, S. C. Construction of SARS coronavirus spike receptor-binding area complexed with receptor. Science 309, 1864–1868 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, Y., Yang, C., Xu, X., Xu, W. & Liu, S. Structural and practical properties of SARS-CoV-2 spike protein: Potential antivirus drug improvement for COVID-19. Acta Pharmacol. Sin. 41, 1141–1149 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Xiao, X., Chakraborti, S., Dimitrov, A. S., Gramatikoff, Ok. & Dimitrov, D. S. The SARS-CoV S glycoprotein: Expression and practical characterization. Biochem. Biophys. Res. Commun. 312, 1159–1164 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wong, S. Ok., Li, W., Moore, M. J., Choe, H. & Farzan, M. A 193-amino acid fragment of the SARS coronavirus S protein effectively binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Junxian, O. et al. V367F mutation in SARS-CoV-2 spike RBD rising through the early transmission part enhances viral infectivity by elevated human ACE2 receptor binding affinity. J. Virol. 95, e00617-21 (2021).

    Article 

    Google Scholar
     

  • Daniel, W. et al. Cryo-EM construction of the 2019-nCoV spike within the prefusion conformation. Science 367, 1260–1263 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bosch, B. J., van der Zee, R., de Haan, C. A. M. & Rottier, P. J. M. The coronavirus spike protein is a category I virus fusion protein: Structural and practical characterization of the fusion core complicated. J. Virol. 77, 8801–8811 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoffmann, M. et al. SARS-CoV-2 cell entry is determined by ACE2 and TMPRSS2 and is blocked by a clinically confirmed protease inhibitor. Cell 181, 271-280.e8 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Donoghue, M. et al. A novel angiotensin-converting enzyme–associated carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 87, e1–e9 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao, Y. et al. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. bioRxiv. https://doi.org/10.1101/2020.01.26.919985 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J., Huang, Z., Lin, L. & Lv, J. Coronavirus illness 2019 (COVID-19) and heart problems: A viewpoint on the potential affect of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of extreme acute respiratory syndrome coronavirus 2 an infection. J. Am. Coronary heart Assoc. 9, e016219 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shang, J. et al. Structural foundation of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yushun, W. et al. Receptor recognition by the novel coronavirus from Wuhan: An evaluation primarily based on decade-long structural research of SARS coronavirus. J. Virol. 94, e00127-20 (2021).


    Google Scholar
     

  • Bai, C. & Warshel, A. Vital variations between the binding options of the spike proteins of SARS-CoV-2 and SARS-CoV. J. Phys. Chem. B 124, 5907–5912 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bai, C. et al. Predicting mutational results on receptor binding of the spike protein of SARS-CoV-2 variants. J. Am. Chem. Soc. 143, 17646–17654. https://doi.org/10.1021/jacs.1c07965 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen, J., Wang, R., Gilby, N. B. & Wei, G. Omicron variant (B.1.1.529): Infectivity, vaccine breakthrough, and antibody resistance. J. Chem. Inf. Mannequin. https://doi.org/10.1021/acs.jcim.1c01451 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, R., Murugan, N. A. & Srivastava, V. Improved binding affinity of omicron’s spike protein for the human angiotensin-converting enzyme 2 receptor is the important thing behind its elevated virulence. Int. J. Mol. Sci. 23, 3409 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Socher, E., Heger, L., Paulsen, F., Zunke, F. & Arnold, P. Molecular dynamics simulations of the delta and omicron SARS-CoV-2 spike–ACE2 complexes reveal distinct modifications between each variants. Comput. Struct. Biotechnol. J. 20, 1168–1176 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miotto, M. et al. Inferring the stabilization results of SARS-CoV-2 variants on the binding with ACE2 receptor. Commun. Biol. 5, 20221 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hamelberg, D., Mongan, J. & McCammon, J. A. Accelerated molecular dynamics: A promising and environment friendly simulation methodology for biomolecules. J. Chem. Phys. 120, 11919–11929 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kukol, A. Molecular Modeling of Proteins, 2nd edn, 1215 (2014).

  • Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Web site-specific glycan evaluation of the SARS-CoV-2 spike. Science 369, 330–333 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M. & Jensen, J. H. Improved therapy of ligands and coupling results in empirical calculation and rationalization of pKa values. J. Chem. Idea Comput. 7, 2284–2295 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Maier, J. A. et al. ff14SB: Enhancing the accuracy of protein aspect chain and spine parameters from ff99SB. J. Chem. Idea Comput. 11, 3696–3713 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheatham, T. E. III, Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Lin, C., Luchko, T., Luo, R., Madej, B. & Mermelstein, D. L. X. and P. A. Ok. AMBER 2016 (Univ. California, 2016).

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of straightforward potential capabilities for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kräutler, V., van Gunsteren, W. F. & Hünenberger, P. H. A quick SHAKE algorithm to unravel distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 22, 501–508 (2001).

    Article 

    Google Scholar
     

  • Voter, A. F. A way for accelerating the molecular dynamics simulation of rare occasions. J. Chem. Phys. 106, 4665–4677 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Voter, A. F. Hyperdynamics: Accelerated molecular dynamics of rare occasions. Phys. Rev. Lett. 78, 3908–3911 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hamelberg, D. & McCammon, J. A. Quick peptidyl cis–trans isomerization throughout the versatile Gly-rich flaps of HIV-1 protease. J. Am. Chem. Soc. 127, 13778–13779 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Markwick, P. R. L., Bouvignies, G. & Blackledge, M. Exploring a number of timescale motions in protein GB3 utilizing accelerated molecular dynamics and NMR spectroscopy. J. Am. Chem. Soc. 129, 4724–4730 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bucher, D., Pierce, L. C. T., McCammon, J. A. & Markwick, P. R. L. On the usage of accelerated molecular dynamics to reinforce configurational sampling in ab initio simulations. J. Chem. Idea Comput. 7, 890–897 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pierce, L. C. T. et al. Routine entry to millisecond time scale occasions with accelerated molecular dynamics. J. Chem. Idea Comput. 8, 2997–3002 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berndt, Ok. D., Beunink, J., Schroeder, W. & Wuethrich, Ok. Designed substitute of an inner hydration water molecule in BPTI: Structural and practical implications of a Gly-to-Ser mutation. Biochemistry 32, 4564–4570 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng, M. H., Kaya, C. & Bahar, I. Quantitative evaluation of the energetics of dopamine translocation by human dopamine transporter. J. Phys. Chem. B 122, 5336–5346 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, J., Alekseenko, A., Kozakov, D. & Miao, Y. Improved modeling of peptide–protein binding by world docking and accelerated molecular dynamics simulations. Entrance. Mol. Biosci. 6, 112 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patrick, R. et al. Utilizing accelerated molecular dynamics simulation to elucidate the consequences of the T198F mutation on the molecular flexibility of the West Nile virus envelope protein. Sci. Rep. 10, 9625. https://doi.org/10.1038/s41598-020-66344-8 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Markwick, P. R. L. & McCammon, J. A. Finding out practical dynamics in bio-molecules utilizing accelerated molecular dynamics. Phys. Chem. Chem. Phys. 13, 20053–20065 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roe, D. R., Bergonzo, C. & Cheatham, T. E. Analysis of enhanced sampling supplied by accelerated molecular dynamics with Hamiltonian duplicate trade strategies. J. Phys. Chem. B 118, 3543–3552 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, C. et al. Conformational modifications of glutamine 5′-phosphoribosylpyrophosphate amidotransferase for 2 substrates analogue binding: Perception from typical molecular dynamics and accelerated molecular dynamics simulations. Entrance. Chem. 9, 51 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Grant, B. J., Rodrigues, A. P. C. C., ElSawy, Ok. M., McCammon, J. A. & Caves, L. S. D. D. Bio3d: An R package deal for the comparative evaluation of protein buildings. Bioinformatics 22, 2695–2696 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • da Costa, C. H. S. et al. Evaluation of the PETase conformational modifications induced by poly(ethylene terephthalate) binding. Proteins Struct. Funct. Bioinform. (2021).

  • Costa, C. H. S. et al. Computational research of conformational modifications in human 3-hydroxy-3-methylglutaryl coenzyme reductase induced by substrate binding. J. Biomol. Struct. Dyn. 37, 4374–4383 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • da Costa, C. H. S. et al. Unraveling the conformational dynamics of glycerol 3-phosphate dehydrogenase, a nicotinamide adenine dinucleotide-dependent enzyme of Leishmania mexicana. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2020.1742206 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grosso, M., Kalstein, A., Parisi, G., Roitberg, A. E. & Fernandez-Alberti, S. On the evaluation and comparability of conformer-specific important dynamics upon ligand binding to a protein. J. Chem. Phys. 142, 245101 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A. & Case, D. A. Continuum solvent research of the steadiness of DNA, RNA, and phosphoramidate–DNA helices. J. Am. Chem. Soc. 120, 9401–9409 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Kollman, P. A. et al. Calculating buildings and free energies of complicated molecules: Combining molecular mechanics and continuum fashions. Acc. Chem. Res. 33, 889–897 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lill, M. A. & Thompson, J. J. Solvent interplay power calculations on molecular dynamics trajectories: Rising the effectivity utilizing systematic body choice. J. Chem. Inf. Mannequin. 51, 2680–2689 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Case, D. A. et al. The Amber biomolecular simulation packages. J. Comput. Chem. 26, 1668–1688 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cui, Q. et al. Molecular dynamics—solvated interplay power research of protein-protein interactions: The MP1–p14 scaffolding complicated. J. Mol. Biol. 379, 787–802 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang, Y., Liu, H. & Yao, X. Understanding the molecular foundation of MK2-p38α signaling complicated meeting: Insights into protein-protein interplay by molecular dynamics and free power research. Mol. Biosyst. 8, 2106–2118 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schubert, M. et al. Human serum from SARS-CoV-2-vaccinated and COVID-19 sufferers exhibits lowered binding to the RBD of SARS-CoV-2 Omicron variant. BMC Med. 20, 102 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wu, L. et al. SARS-CoV-2 Omicron RBD exhibits weaker binding affinity than the at present dominant Delta variant to human ACE2. Sign Transduct. Goal. Ther. 7, 8 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Han, P. et al. Receptor binding and complicated buildings of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 185, 630-640.e10 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dhiraj, M. et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM construction of spike protein–ACE2 complicated. Science 375, 760–764 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lin, S. et al. Characterization of SARS-CoV-2 Omicron spike RBD reveals considerably decreased stability, extreme evasion of neutralizing-antibody recognition however unaffected engagement by decoy ACE2 modified for enhanced RBD binding. Sign Transduct. Goal. Ther. 7, 56 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Woo, H. G. & Shah, M. Omicron: A closely mutated SARS-CoV-2 variant displays stronger binding to ACE2 and potently escape permitted COVID-19 therapeutic antibodies. Entrance. Immunol. 12, 830527 (2021).

    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments