Thursday, August 11, 2022
No menu items!
HomeChemistryEfficient elimination of Pb(II) ions utilizing piperazine-modified magnetic graphene oxide nanocomposite; optimization...

Efficient elimination of Pb(II) ions utilizing piperazine-modified magnetic graphene oxide nanocomposite; optimization by response floor methodology

[ad_1]

  • Zaferani, S. P. G., Emami, M. R. S., Amiri, M. Okay. & Binaeian, E. Optimization of the elimination Pb(II) and its Gibbs free vitality by thiosemicarbazide modified chitosan utilizing RSM and ANN modeling. Int. J. Biol. Macromol. 139, 307–319. https://doi.org/10.1016/j.ijbiomac.2019.07.208 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gutiérrez-López, D., Flores-Alamo, N., Carreño-de-León, M. & Solache-Rios, M. Removing of Pb(II) from aqueous resolution by utilizing micro-spheres of Zea mays rachis–sodium alginate by batch and column techniques. Water Provide 20, 2133–2144 (2020).

    Article 

    Google Scholar
     

  • Kaur, M., Kumari, S. & Sharma, P. Removing of Pb(II) from aqueous resolution utilizing nanoadsorbent of Oryza sativa husk: Isotherm, kinetic and thermodynamic research. Biotechnol. Rep. 25, e00410. https://doi.org/10.1016/j.btre.2019.e00410 (2020).

    Article 

    Google Scholar
     

  • Şahan, T. Utility of RSM for Pb(II) and Cu(II) adsorption by bentonite enriched with SH teams and a binary system examine. J. Water Course of Eng. 31, 100867. https://doi.org/10.1016/j.jwpe.2019.100867 (2019).

    Article 

    Google Scholar
     

  • Tao, Y., Zhang, C., Lü, T. & Zhao, H. Removing of Pb (II) ions from wastewater by utilizing polyethyleneimine-functionalized Fe3O4 magnetic nanoparticles. Appl. Sci. 10, 948 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Motlochová, M., Slovák, V., Pližingrová, E., Lidin, S. & Šubrt, J. Extremely-efficient elimination of Pb(ii), Cu(ii) and Cd(ii) from water by novel lithium, sodium and potassium titanate reusable microrods. RSC Adv. 10, 3694–3704. https://doi.org/10.1039/C9RA08737K (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo, J. et al. H2O2 biosensor consisted of hemoglobin-DNA conjugate on nanoporous gold skinny movie electrode with electrochemical sign enhancement. Nano Converg. 6, 1. https://doi.org/10.1186/s40580-018-0172-z (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moradi, A., Najafi Moghadam, P., Hasanzadeh, R. & Sillanpää, M. Chelating magnetic nanocomposite for the fast elimination of Pb(ii) ions from aqueous options: Characterization, kinetic, isotherm and thermodynamic research. RSC Adv. 7, 433–448. https://doi.org/10.1039/C6RA26356A (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tran, C. V., Quang, D. V., Nguyen Thi, H. P., Truong, T. N. & La, D. D. Efficient elimination of Pb(II) from aqueous media by a brand new design of Cu–Mg binary ferrite. ACS Omega 5, 7298–7306. https://doi.org/10.1021/acsomega.9b04126 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim, H. S., Ammar, N. S., Soylak, M. & Ibrahim, M. Removing of Cd(II) and Pb(II) from aqueous resolution utilizing dried water hyacinth as a biosorbent. Spectrochim. Acta Half A Mol. Biomol. Spectrosc. 96, 413–420. https://doi.org/10.1016/j.saa.2012.05.039 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bhatnagar, A. & Sillanpää, M. Removing of pure natural matter (NOM) and its constituents from water by adsorption—A evaluation. Chemosphere 166, 497–510. https://doi.org/10.1016/j.chemosphere.2016.09.098 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Memon, Z. M., Yilmaz, E. & Soylak, M. One step hydrothermal synthesis and characterization of moss like MWCNT-Bi2S3 nanomaterial for stable section extraction of copper. Talanta 174, 645–651. https://doi.org/10.1016/j.talanta.2017.06.068 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nayebi, B. et al. Prussian blue-based nanostructured supplies: Catalytic functions for environmental remediation and vitality conversion. Mol. Catal. 514, 111835. https://doi.org/10.1016/j.mcat.2021.111835 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Okay. et al. Facile synthesis of monodispersed Pd nanocatalysts embellished on graphene oxide for discount of nitroaromatics in aqueous resolution. Res. Chem. Intermed. 45, 599–611. https://doi.org/10.1007/s11164-018-3621-8 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Sadegh, H. et al. The position of nanomaterials as efficient adsorbents and their functions in wastewater remedy. J. Nanostruct. Chem. 7, 1–14. https://doi.org/10.1007/s40097-017-0219-4 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Makvandi, P. et al. Functionalization of polymers and nanomaterials for water remedy, meals packaging, textile and biomedical functions: A evaluation. Environ. Chem. Lett. 19, 583–611. https://doi.org/10.1007/s10311-020-01089-4 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zahedi, S. S., Larki, A., Saghanezhad, S. J. & Nikpour, Y. 1,4-Diazabicyclo [2.2.2] octane functionalized mesoporous silica SBA-15 ([email protected]): A novel extremely selective adsorbent for selective separation/preconcentration of Cr(VI) from environmental water samples. SILICON https://doi.org/10.1007/s12633-020-00903-6 (2021).

    Article 

    Google Scholar
     

  • Rezaei, M., Pourang, N. & Moradi, A. M. Removing of lead from aqueous options utilizing three biosorbents of aquatic origin with the emphasis on the affective elements. Sci. Rep. 12, 751. https://doi.org/10.1038/s41598-021-04744-0 (2022).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kheyrabadi, F. B. & Zare, E. N. Antimicrobial nanocomposite adsorbent based mostly on poly(meta-phenylenediamine) for remediation of lead (II) from water medium. Sci. Rep. 12, 4632. https://doi.org/10.1038/s41598-022-08668-1 (2022).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahadi, N., Askari, S., Fouladitajar, A. & Akbari, I. Facile synthesis of hierarchically structured MIL-53(Al) with superior properties utilizing an environmentally-friendly ultrasonic methodology for separating lead ions from aqueous options. Sci. Rep. 12, 2649. https://doi.org/10.1038/s41598-022-06518-8 (2022).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Fast elimination of Pb(II) from aqueous resolution utilizing branched polyethylenimine enhanced magnetic carboxymethyl chitosan optimized with response floor methodology. Sci. Rep. 7, 10264. https://doi.org/10.1038/s41598-017-09700-5 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, L. et al. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation. Sci. Rep. 6, 28924. https://doi.org/10.1038/srep28924 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C., Wang, H. & Gu, G. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response floor methodology for Pb(II) sorption. Carbohyd. Polym. 182, 21–28. https://doi.org/10.1016/j.carbpol.2017.11.004 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. & Wang, H. Pb(II) sorption from aqueous resolution by novel biochar loaded with nano-particles. Chemosphere 192, 1–4. https://doi.org/10.1016/j.chemosphere.2017.10.125 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, C. & Wang, H. Carboxyl functionalized Cinnamomum camphora for elimination of heavy metals from artificial wastewater-contribution to sustainability in agroforestry. J. Clear. Prod. 184, 921–928. https://doi.org/10.1016/j.jclepro.2018.03.004 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Rahmi, I. & Mustafa, I. Methylene blue elimination from water utilizing H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem. J. 144, 397–402. https://doi.org/10.1016/j.microc.2018.09.032 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yuvali, D., Narin, I., Soylak, M. & Yilmaz, E. Inexperienced synthesis of magnetic carbon nanodot/graphene oxide hybrid materials (Fe3O4@[email protected]) for magnetic stable section extraction of ibuprofen in human blood samples previous to HPLC-DAD dedication. J. Pharm. Biomed. Anal. 179, 113001. https://doi.org/10.1016/j.jpba.2019.113001 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yilmaz, E., Ulusoy, H. İ, Demir, Ö. & Soylak, M. A brand new magnetic nanodiamond/graphene oxide hybrid (Fe3O4@[email protected]) materials for pre-concentration and delicate dedication of sildenafil in alleged natural aphrodisiacs by HPLC-DAD system. J. Chromatogr. B 1084, 113–121. https://doi.org/10.1016/j.jchromb.2018.03.030 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Yusuf, M., Kumar, M., Khan, M. A., Sillanpää, M. & Arafat, H. A evaluation on exfoliation, characterization, environmental and vitality functions of graphene and graphene-based composites. Adv. Coll. Interface. Sci. 273, 102036. https://doi.org/10.1016/j.cis.2019.102036 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Ozkantar, N., Yilmaz, E., Soylak, M. & Tuzen, M. Pyrocatechol violet impregnated magnetic graphene oxide for magnetic stable section microextraction of copper in water, black tea and food plan dietary supplements. Meals Chem. 321, 126737. https://doi.org/10.1016/j.foodchem.2020.126737 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Guo, T. et al. Mechanism of Cd(II) and Cu(II) adsorption onto few-layered magnetic graphene oxide as an environment friendly adsorbent. ACS Omega 6, 16535–16545. https://doi.org/10.1021/acsomega.1c01770 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, N., Qiu, J. & Qian, Y. Polyethyleneimine-modified magnetic carbon nanotubes as solid-phase extraction adsorbent for the evaluation of multi-class mycotoxins in milk by way of liquid chromatography–tandem mass spectrometry. J. Sep. Sci. 44, 636–644. https://doi.org/10.1002/jssc.202000821 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Liang, W., Lu, Y., Li, N., Li, H. & Zhu, F. Microwave-assisted synthesis of magnetic floor molecular imprinted polymer for adsorption and stable section extraction of 4-nitrophenol in wastewater. Microchem. J. 159, 105316. https://doi.org/10.1016/j.microc.2020.105316 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Yilmaz, E., Alosmanov, R. M. & Soylak, M. Magnetic stable section extraction of lead(ii) and cadmium(ii) on a magnetic phosphorus-containing polymer (M-PhCP) for his or her microsampling flame atomic absorption spectrometric determinations. RSC Adv. 5, 33801–33808. https://doi.org/10.1039/C5RA02328A (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Huang, T. et al. Environment friendly elimination of methylene blue from aqueous options utilizing magnetic graphene oxide modified zeolite. J. Colloid Interface Sci. 543, 43–51. https://doi.org/10.1016/j.jcis.2019.02.030 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yu, W., Sisi, L., Haiyan, Y. & Jie, L. Progress within the useful modification of graphene/graphene oxide: A evaluation. RSC Adv. 10, 15328–15345. https://doi.org/10.1039/D0RA01068E (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez, A. & Liu, J. Covalent and noncovalent functionalization of graphene oxide with DNA for sensible sensing. Adv. Intell. Syst. 2, 2000123. https://doi.org/10.1002/aisy.202000123 (2020).

    Article 

    Google Scholar
     

  • Chen, D., Feng, H. & Li, J. Graphene oxide: Preparation, functionalization, and electrochemical functions. Chem. Rev. 112, 6027–6053. https://doi.org/10.1021/cr300115g (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ahmad, N. F., Kamboh, M. A., Nodeh, H. R., Halim, S. N. B. A. & Mohamad, S. Synthesis of piperazine functionalized magnetic sporopollenin: A brand new organic-inorganic hybrid materials for the elimination of lead(II) and arsenic(III) from aqueous resolution. Environ. Sci. Pollut. Res. 24, 21846–21858. https://doi.org/10.1007/s11356-017-9820-9 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Amini, M., Naderi, R., Mahdavian, M. & Badiei, A. Impact of piperazine functionalization of mesoporous silica sort SBA-15 on the loading effectivity of 2-mercaptobenzothiazole corrosion inhibitor. Ind. Eng. Chem. Res. 59, 3394–3404. https://doi.org/10.1021/acs.iecr.9b05261 (2020).

    CAS 
    Article 

    Google Scholar
     

  • You, X. et al. Piperazine-functionalized porous anion alternate membranes for environment friendly acid restoration by diffusion dialysis. J. Membr. Sci. 654, 120560. https://doi.org/10.1016/j.memsci.2022.120560 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Pourhasan, B. & Mohammadi-Nejad, A. Piperazine-functionalized nickel ferrite nanoparticles as environment friendly and reusable catalysts for the solvent-free synthesis of 2-amino-4H-chromenes. J. Chin. Chem. Soc. 66, 1356–1362. https://doi.org/10.1002/jccs.201800291 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Larki, A., Saghanezhad, S. J. & Ghomi, M. Current advances of functionalized SBA-15 within the separation/preconcentration of assorted analytes: A evaluation. Microchem. J. 169, 106601 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Doustkhah, E. & Rostamnia, S. Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a strong hybrid catalyst for synthesis of indazolophthalazinetriones. J. Colloid Interface Sci. 478, 280–287. https://doi.org/10.1016/j.jcis.2016.06.020 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Nasiri, R., Arsalani, N. & Panahian, Y. One-pot synthesis of novel magnetic three-dimensional graphene/chitosan/nickel ferrite nanocomposite for lead ions elimination from aqueous resolution: RSM modelling design. J. Clear. Prod. 201, 507–515. https://doi.org/10.1016/j.jclepro.2018.08.059 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Khazaee, A., Jahanshahi, R., Sobhani, S., Skibsted, J. & Sansano, J. M. Immobilized piperazine on the floor of graphene oxide as a heterogeneous bifunctional acid–base catalyst for the multicomponent synthesis of 2-amino-3-cyano-4H-chromenes. Inexperienced Chem. 22, 4604–4616. https://doi.org/10.1039/D0GC01274B (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bao, S., Yang, W., Wang, Y., Yu, Y. & Solar, Y. One-pot synthesis of magnetic graphene oxide composites as an environment friendly and recoverable adsorbent for Cd(II) and Pb(II) elimination from aqueous resolution. J. Hazard. Mater. 381, 120914. https://doi.org/10.1016/j.jhazmat.2019.120914 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rodrigo, E. et al. Diminished graphene oxide supported piperazine in aminocatalysis. Chem. Commun. 50, 6270–6273. https://doi.org/10.1039/C4CC02701A (2014).

    CAS 
    Article 

    Google Scholar
     

  • Sayahi, M. H., Bahadorikhalili, S., Saghanezhad, S. J., Miller, M. A. & Mahdavi, M. Sulfonic acid-functionalized poly(4-styrenesulfonic acid) mesoporous graphene oxide hybrid for one-pot preparation of coumarin-based pyrido[2,3-d]pyrimidine-dione derivatives. Res. Chem. Intermed. 46, 491–507. https://doi.org/10.1007/s11164-019-03962-6 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Raghu, M. S. et al. Adsorption and antimicrobial research of chemically bonded magnetic graphene oxide-Fe3O4 nanocomposite for water purification. J. Water Course of. Eng. 17, 22–31. https://doi.org/10.1016/j.jwpe.2017.03.001 (2017).

    Article 

    Google Scholar
     

  • Ghasemi, S. M. et al. Utility of modified maize hull for elimination of Cu (II) ions from aqueous options. Environ. Prot. Eng. 43, 93–103 (2017).


    Google Scholar
     

  • Anari-Anaraki, M. & Nezamzadeh-Ejhieh, A. J. Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for elimination of Pb (II) from aqueous resolution. J. Colloid Interface Sci. 440, 272–281 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dehghani, M. H. et al. Statistical modelling of endocrine disrupting compounds adsorption onto activated carbon ready from wooden utilizing CCD-RSM and DE hybrid evolutionary optimization framework: Comparability of linear vs non-linear isotherm and kinetic parameters. J. Mol. Liq. 302, 112526. https://doi.org/10.1016/j.molliq.2020.112526 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bahrami, M., Amiri, M. J. & Bagheri, F. Optimization of the lead elimination from aqueous resolution utilizing two starch based mostly adsorbents: Design of experiments utilizing response floor methodology (RSM). J. Environ. Chem. Eng. 7, 102793. https://doi.org/10.1016/j.jece.2018.11.038 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Arabkhani, P., Javadian, H., Asfaram, A. & Hosseini, S. N. A reusable mesoporous adsorbent for environment friendly remedy of hazardous triphenylmethane dye wastewater: RSM-CCD optimization and fast microwave-assisted regeneration. Sci. Rep. 11, 22751. https://doi.org/10.1038/s41598-021-02213-2 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamoradi‬ Babaei, Z., Larki, A. & Ghanemi, Okay. Utility of molybdenum disulfide nanosheets adsorbent for simultaneous preconcentration and dedication of Cd(II), Pb(II), Zn(II) and Ni(II) in water samples. J. Iran. Chem. Soc. 10, 10. https://doi.org/10.1007/s13738-021-02289-7 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Javinezhad, S., Larki, A., Nikpour, Y. & Saghanezhad, S. J. Examine on the appliance of Cucurbit[6]uril as a nanoporous adsorbent for the elimination of two,4-dinitrophenol from wastewaters. Anal. Bioanal. Chem. Res. 5, 217–228. https://doi.org/10.22036/abcr.2018.113797.1180 (2018).

    Article 

    Google Scholar
     

  • Shiralipour, R. & Larki, A. Pre-concentration and dedication of tartrazine dye from aqueous options utilizing modified cellulose nanosponges. Ecotoxicol. Environ. Saf. 135, 123–129. https://doi.org/10.1016/j.ecoenv.2016.09.038 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Pourreza, N., Parham, H. & Pourbati, M. A. Magnetic iron oxide nanoparticles modified by methyl trioctyl ammonium chloride as an adsorbent for the elimination of erythrosine from aqueous options. Desalin. Water Deal with. 57, 17454–17462. https://doi.org/10.1080/19443994.2015.1086892 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Liu, X. et al. Banana stem and leaf biochar as an efficient adsorbent for cadmium and lead in aqueous resolution. Sci. Rep. 12, 1584. https://doi.org/10.1038/s41598-022-05652-7 (2022).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuzen, M., Sari, A., Mendil, D. & Soylak, M. Biosorptive elimination of mercury(II) from aqueous resolution utilizing lichen (Xanthoparmelia conspersa) biomass: Kinetic and equilibrium research. J. Hazard. Mater. 169, 263–270. https://doi.org/10.1016/j.jhazmat.2009.03.096 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Yu, X.-L. & He, Y. Optimum ranges of variables for an efficient adsorption of lead(II) by the agricultural waste pomelo (Citrus grandis) peels utilizing Doehlert designs. Sci. Rep. 8, 729. https://doi.org/10.1038/s41598-018-19227-y (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, X., Baharinikoo, L., Farahani, M. D., Mahdizadeh, B. & Farizhandi, A. A. Okay. Experimental modelling research on the elimination of dyes and heavy steel ions utilizing ZnFe2O4 nanoparticles. Sci. Rep. 12, 5987. https://doi.org/10.1038/s41598-022-10036-y (2022).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Bery, H. M., Saleh, M., El-Gendy, R. A., Saleh, M. R. & Thabet, S. M. Excessive adsorption capability of phenol and methylene blue utilizing activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep. 12, 5499. https://doi.org/10.1038/s41598-022-09475-4 (2022).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahvi, A. H., Balarak, D. & Bazrafshan, E. Exceptional reusability of magnetic Fe3O4-graphene oxide composite: A extremely efficient adsorbent for Cr(VI) ions. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/03067319.2021.1910250 (2021).

    Article 

    Google Scholar
     

  • Cui, L. et al. EDTA functionalized magnetic graphene oxide for elimination of Pb(II), Hg(II) and Cu(II) in water remedy: Adsorption mechanism and separation property. Chem. Eng. J. 281, 1–10. https://doi.org/10.1016/j.cej.2015.06.043 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Alipour, A., Zarinabadi, S., Azimi, A. & Mirzaei, M. Adsorptive elimination of Pb(II) ions from aqueous options by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response floor methodology (RSM). Int. J. Biol. Macromol. 151, 124–135. https://doi.org/10.1016/j.ijbiomac.2020.02.109 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ghasemi, E., Heydari, A. & Sillanpää, M. Superparamagnetic Fe3O4@EDTA nanoparticles as an environment friendly adsorbent for simultaneous elimination of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples. Microchem. J. 131, 51–56. https://doi.org/10.1016/j.microc.2016.11.011 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Lyu, F. et al. Environment friendly elimination of Pb(II) ions from aqueous resolution by modified purple mud. J. Hazard. Mater. 406, 124678. https://doi.org/10.1016/j.jhazmat.2020.124678 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Behbahani, E. S., Dashtian, Okay. & Ghaedi, M. Fe3O4–FeMoS4: Promise magnetite LDH-based adsorbent for simultaneous elimination of Pb (II), Cd (II), and Cu (II) heavy steel ions. J. Hazard. Mater. 410, 124560. https://doi.org/10.1016/j.jhazmat.2020.124560 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ji, J., Chen, G. & Zhao, J. Preparation and characterization of amino/thiol bifunctionalized magnetic nanoadsorbent and its utility in fast elimination of Pb (II) from aqueous system. J. Hazard. Mater. 368, 255–263. https://doi.org/10.1016/j.jhazmat.2019.01.035 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dai, Okay. et al. Even handed fabrication of bifunctionalized graphene oxide/MnFe2O4 magnetic nanohybrids for enhanced elimination of Pb(II) from water. J. Colloid Interface Sci. 579, 815–822. https://doi.org/10.1016/j.jcis.2020.06.085 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments