[ad_1]
Zaferani, S. P. G., Emami, M. R. S., Amiri, M. Okay. & Binaeian, E. Optimization of the elimination Pb(II) and its Gibbs free vitality by thiosemicarbazide modified chitosan utilizing RSM and ANN modeling. Int. J. Biol. Macromol. 139, 307–319. https://doi.org/10.1016/j.ijbiomac.2019.07.208 (2019).
Gutiérrez-López, D., Flores-Alamo, N., Carreño-de-León, M. & Solache-Rios, M. Removing of Pb(II) from aqueous resolution by utilizing micro-spheres of Zea mays rachis–sodium alginate by batch and column techniques. Water Provide 20, 2133–2144 (2020).
Kaur, M., Kumari, S. & Sharma, P. Removing of Pb(II) from aqueous resolution utilizing nanoadsorbent of Oryza sativa husk: Isotherm, kinetic and thermodynamic research. Biotechnol. Rep. 25, e00410. https://doi.org/10.1016/j.btre.2019.e00410 (2020).
Şahan, T. Utility of RSM for Pb(II) and Cu(II) adsorption by bentonite enriched with SH teams and a binary system examine. J. Water Course of Eng. 31, 100867. https://doi.org/10.1016/j.jwpe.2019.100867 (2019).
Tao, Y., Zhang, C., Lü, T. & Zhao, H. Removing of Pb (II) ions from wastewater by utilizing polyethyleneimine-functionalized Fe3O4 magnetic nanoparticles. Appl. Sci. 10, 948 (2020).
Motlochová, M., Slovák, V., Pližingrová, E., Lidin, S. & Šubrt, J. Extremely-efficient elimination of Pb(ii), Cu(ii) and Cd(ii) from water by novel lithium, sodium and potassium titanate reusable microrods. RSC Adv. 10, 3694–3704. https://doi.org/10.1039/C9RA08737K (2020).
Jo, J. et al. H2O2 biosensor consisted of hemoglobin-DNA conjugate on nanoporous gold skinny movie electrode with electrochemical sign enhancement. Nano Converg. 6, 1. https://doi.org/10.1186/s40580-018-0172-z (2019).
Moradi, A., Najafi Moghadam, P., Hasanzadeh, R. & Sillanpää, M. Chelating magnetic nanocomposite for the fast elimination of Pb(ii) ions from aqueous options: Characterization, kinetic, isotherm and thermodynamic research. RSC Adv. 7, 433–448. https://doi.org/10.1039/C6RA26356A (2017).
Tran, C. V., Quang, D. V., Nguyen Thi, H. P., Truong, T. N. & La, D. D. Efficient elimination of Pb(II) from aqueous media by a brand new design of Cu–Mg binary ferrite. ACS Omega 5, 7298–7306. https://doi.org/10.1021/acsomega.9b04126 (2020).
Ibrahim, H. S., Ammar, N. S., Soylak, M. & Ibrahim, M. Removing of Cd(II) and Pb(II) from aqueous resolution utilizing dried water hyacinth as a biosorbent. Spectrochim. Acta Half A Mol. Biomol. Spectrosc. 96, 413–420. https://doi.org/10.1016/j.saa.2012.05.039 (2012).
Bhatnagar, A. & Sillanpää, M. Removing of pure natural matter (NOM) and its constituents from water by adsorption—A evaluation. Chemosphere 166, 497–510. https://doi.org/10.1016/j.chemosphere.2016.09.098 (2017).
Memon, Z. M., Yilmaz, E. & Soylak, M. One step hydrothermal synthesis and characterization of moss like MWCNT-Bi2S3 nanomaterial for stable section extraction of copper. Talanta 174, 645–651. https://doi.org/10.1016/j.talanta.2017.06.068 (2017).
Nayebi, B. et al. Prussian blue-based nanostructured supplies: Catalytic functions for environmental remediation and vitality conversion. Mol. Catal. 514, 111835. https://doi.org/10.1016/j.mcat.2021.111835 (2021).
Zhang, Okay. et al. Facile synthesis of monodispersed Pd nanocatalysts embellished on graphene oxide for discount of nitroaromatics in aqueous resolution. Res. Chem. Intermed. 45, 599–611. https://doi.org/10.1007/s11164-018-3621-8 (2019).
Sadegh, H. et al. The position of nanomaterials as efficient adsorbents and their functions in wastewater remedy. J. Nanostruct. Chem. 7, 1–14. https://doi.org/10.1007/s40097-017-0219-4 (2017).
Makvandi, P. et al. Functionalization of polymers and nanomaterials for water remedy, meals packaging, textile and biomedical functions: A evaluation. Environ. Chem. Lett. 19, 583–611. https://doi.org/10.1007/s10311-020-01089-4 (2021).
Zahedi, S. S., Larki, A., Saghanezhad, S. J. & Nikpour, Y. 1,4-Diazabicyclo [2.2.2] octane functionalized mesoporous silica SBA-15 ([email protected]): A novel extremely selective adsorbent for selective separation/preconcentration of Cr(VI) from environmental water samples. SILICON https://doi.org/10.1007/s12633-020-00903-6 (2021).
Rezaei, M., Pourang, N. & Moradi, A. M. Removing of lead from aqueous options utilizing three biosorbents of aquatic origin with the emphasis on the affective elements. Sci. Rep. 12, 751. https://doi.org/10.1038/s41598-021-04744-0 (2022).
Kheyrabadi, F. B. & Zare, E. N. Antimicrobial nanocomposite adsorbent based mostly on poly(meta-phenylenediamine) for remediation of lead (II) from water medium. Sci. Rep. 12, 4632. https://doi.org/10.1038/s41598-022-08668-1 (2022).
Ahadi, N., Askari, S., Fouladitajar, A. & Akbari, I. Facile synthesis of hierarchically structured MIL-53(Al) with superior properties utilizing an environmentally-friendly ultrasonic methodology for separating lead ions from aqueous options. Sci. Rep. 12, 2649. https://doi.org/10.1038/s41598-022-06518-8 (2022).
Wang, Y. et al. Fast elimination of Pb(II) from aqueous resolution utilizing branched polyethylenimine enhanced magnetic carboxymethyl chitosan optimized with response floor methodology. Sci. Rep. 7, 10264. https://doi.org/10.1038/s41598-017-09700-5 (2017).
Hu, L. et al. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation. Sci. Rep. 6, 28924. https://doi.org/10.1038/srep28924 (2016).
Wang, C., Wang, H. & Gu, G. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response floor methodology for Pb(II) sorption. Carbohyd. Polym. 182, 21–28. https://doi.org/10.1016/j.carbpol.2017.11.004 (2018).
Wang, C. & Wang, H. Pb(II) sorption from aqueous resolution by novel biochar loaded with nano-particles. Chemosphere 192, 1–4. https://doi.org/10.1016/j.chemosphere.2017.10.125 (2018).
Wang, C. & Wang, H. Carboxyl functionalized Cinnamomum camphora for elimination of heavy metals from artificial wastewater-contribution to sustainability in agroforestry. J. Clear. Prod. 184, 921–928. https://doi.org/10.1016/j.jclepro.2018.03.004 (2018).
Rahmi, I. & Mustafa, I. Methylene blue elimination from water utilizing H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem. J. 144, 397–402. https://doi.org/10.1016/j.microc.2018.09.032 (2019).
Yuvali, D., Narin, I., Soylak, M. & Yilmaz, E. Inexperienced synthesis of magnetic carbon nanodot/graphene oxide hybrid materials (Fe3O4@[email protected]) for magnetic stable section extraction of ibuprofen in human blood samples previous to HPLC-DAD dedication. J. Pharm. Biomed. Anal. 179, 113001. https://doi.org/10.1016/j.jpba.2019.113001 (2020).
Yilmaz, E., Ulusoy, H. İ, Demir, Ö. & Soylak, M. A brand new magnetic nanodiamond/graphene oxide hybrid (Fe3O4@[email protected]) materials for pre-concentration and delicate dedication of sildenafil in alleged natural aphrodisiacs by HPLC-DAD system. J. Chromatogr. B 1084, 113–121. https://doi.org/10.1016/j.jchromb.2018.03.030 (2018).
Yusuf, M., Kumar, M., Khan, M. A., Sillanpää, M. & Arafat, H. A evaluation on exfoliation, characterization, environmental and vitality functions of graphene and graphene-based composites. Adv. Coll. Interface. Sci. 273, 102036. https://doi.org/10.1016/j.cis.2019.102036 (2019).
Ozkantar, N., Yilmaz, E., Soylak, M. & Tuzen, M. Pyrocatechol violet impregnated magnetic graphene oxide for magnetic stable section microextraction of copper in water, black tea and food plan dietary supplements. Meals Chem. 321, 126737. https://doi.org/10.1016/j.foodchem.2020.126737 (2020).
Guo, T. et al. Mechanism of Cd(II) and Cu(II) adsorption onto few-layered magnetic graphene oxide as an environment friendly adsorbent. ACS Omega 6, 16535–16545. https://doi.org/10.1021/acsomega.1c01770 (2021).
Li, N., Qiu, J. & Qian, Y. Polyethyleneimine-modified magnetic carbon nanotubes as solid-phase extraction adsorbent for the evaluation of multi-class mycotoxins in milk by way of liquid chromatography–tandem mass spectrometry. J. Sep. Sci. 44, 636–644. https://doi.org/10.1002/jssc.202000821 (2021).
Liang, W., Lu, Y., Li, N., Li, H. & Zhu, F. Microwave-assisted synthesis of magnetic floor molecular imprinted polymer for adsorption and stable section extraction of 4-nitrophenol in wastewater. Microchem. J. 159, 105316. https://doi.org/10.1016/j.microc.2020.105316 (2020).
Yilmaz, E., Alosmanov, R. M. & Soylak, M. Magnetic stable section extraction of lead(ii) and cadmium(ii) on a magnetic phosphorus-containing polymer (M-PhCP) for his or her microsampling flame atomic absorption spectrometric determinations. RSC Adv. 5, 33801–33808. https://doi.org/10.1039/C5RA02328A (2015).
Huang, T. et al. Environment friendly elimination of methylene blue from aqueous options utilizing magnetic graphene oxide modified zeolite. J. Colloid Interface Sci. 543, 43–51. https://doi.org/10.1016/j.jcis.2019.02.030 (2019).
Yu, W., Sisi, L., Haiyan, Y. & Jie, L. Progress within the useful modification of graphene/graphene oxide: A evaluation. RSC Adv. 10, 15328–15345. https://doi.org/10.1039/D0RA01068E (2020).
Lopez, A. & Liu, J. Covalent and noncovalent functionalization of graphene oxide with DNA for sensible sensing. Adv. Intell. Syst. 2, 2000123. https://doi.org/10.1002/aisy.202000123 (2020).
Chen, D., Feng, H. & Li, J. Graphene oxide: Preparation, functionalization, and electrochemical functions. Chem. Rev. 112, 6027–6053. https://doi.org/10.1021/cr300115g (2012).
Ahmad, N. F., Kamboh, M. A., Nodeh, H. R., Halim, S. N. B. A. & Mohamad, S. Synthesis of piperazine functionalized magnetic sporopollenin: A brand new organic-inorganic hybrid materials for the elimination of lead(II) and arsenic(III) from aqueous resolution. Environ. Sci. Pollut. Res. 24, 21846–21858. https://doi.org/10.1007/s11356-017-9820-9 (2017).
Amini, M., Naderi, R., Mahdavian, M. & Badiei, A. Impact of piperazine functionalization of mesoporous silica sort SBA-15 on the loading effectivity of 2-mercaptobenzothiazole corrosion inhibitor. Ind. Eng. Chem. Res. 59, 3394–3404. https://doi.org/10.1021/acs.iecr.9b05261 (2020).
You, X. et al. Piperazine-functionalized porous anion alternate membranes for environment friendly acid restoration by diffusion dialysis. J. Membr. Sci. 654, 120560. https://doi.org/10.1016/j.memsci.2022.120560 (2022).
Pourhasan, B. & Mohammadi-Nejad, A. Piperazine-functionalized nickel ferrite nanoparticles as environment friendly and reusable catalysts for the solvent-free synthesis of 2-amino-4H-chromenes. J. Chin. Chem. Soc. 66, 1356–1362. https://doi.org/10.1002/jccs.201800291 (2019).
Larki, A., Saghanezhad, S. J. & Ghomi, M. Current advances of functionalized SBA-15 within the separation/preconcentration of assorted analytes: A evaluation. Microchem. J. 169, 106601 (2021).
Doustkhah, E. & Rostamnia, S. Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a strong hybrid catalyst for synthesis of indazolophthalazinetriones. J. Colloid Interface Sci. 478, 280–287. https://doi.org/10.1016/j.jcis.2016.06.020 (2016).
Nasiri, R., Arsalani, N. & Panahian, Y. One-pot synthesis of novel magnetic three-dimensional graphene/chitosan/nickel ferrite nanocomposite for lead ions elimination from aqueous resolution: RSM modelling design. J. Clear. Prod. 201, 507–515. https://doi.org/10.1016/j.jclepro.2018.08.059 (2018).
Khazaee, A., Jahanshahi, R., Sobhani, S., Skibsted, J. & Sansano, J. M. Immobilized piperazine on the floor of graphene oxide as a heterogeneous bifunctional acid–base catalyst for the multicomponent synthesis of 2-amino-3-cyano-4H-chromenes. Inexperienced Chem. 22, 4604–4616. https://doi.org/10.1039/D0GC01274B (2020).
Bao, S., Yang, W., Wang, Y., Yu, Y. & Solar, Y. One-pot synthesis of magnetic graphene oxide composites as an environment friendly and recoverable adsorbent for Cd(II) and Pb(II) elimination from aqueous resolution. J. Hazard. Mater. 381, 120914. https://doi.org/10.1016/j.jhazmat.2019.120914 (2020).
Rodrigo, E. et al. Diminished graphene oxide supported piperazine in aminocatalysis. Chem. Commun. 50, 6270–6273. https://doi.org/10.1039/C4CC02701A (2014).
Sayahi, M. H., Bahadorikhalili, S., Saghanezhad, S. J., Miller, M. A. & Mahdavi, M. Sulfonic acid-functionalized poly(4-styrenesulfonic acid) mesoporous graphene oxide hybrid for one-pot preparation of coumarin-based pyrido[2,3-d]pyrimidine-dione derivatives. Res. Chem. Intermed. 46, 491–507. https://doi.org/10.1007/s11164-019-03962-6 (2020).
Raghu, M. S. et al. Adsorption and antimicrobial research of chemically bonded magnetic graphene oxide-Fe3O4 nanocomposite for water purification. J. Water Course of. Eng. 17, 22–31. https://doi.org/10.1016/j.jwpe.2017.03.001 (2017).
Ghasemi, S. M. et al. Utility of modified maize hull for elimination of Cu (II) ions from aqueous options. Environ. Prot. Eng. 43, 93–103 (2017).
Anari-Anaraki, M. & Nezamzadeh-Ejhieh, A. J. Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for elimination of Pb (II) from aqueous resolution. J. Colloid Interface Sci. 440, 272–281 (2015).
Dehghani, M. H. et al. Statistical modelling of endocrine disrupting compounds adsorption onto activated carbon ready from wooden utilizing CCD-RSM and DE hybrid evolutionary optimization framework: Comparability of linear vs non-linear isotherm and kinetic parameters. J. Mol. Liq. 302, 112526. https://doi.org/10.1016/j.molliq.2020.112526 (2020).
Bahrami, M., Amiri, M. J. & Bagheri, F. Optimization of the lead elimination from aqueous resolution utilizing two starch based mostly adsorbents: Design of experiments utilizing response floor methodology (RSM). J. Environ. Chem. Eng. 7, 102793. https://doi.org/10.1016/j.jece.2018.11.038 (2019).
Arabkhani, P., Javadian, H., Asfaram, A. & Hosseini, S. N. A reusable mesoporous adsorbent for environment friendly remedy of hazardous triphenylmethane dye wastewater: RSM-CCD optimization and fast microwave-assisted regeneration. Sci. Rep. 11, 22751. https://doi.org/10.1038/s41598-021-02213-2 (2021).
Tamoradi Babaei, Z., Larki, A. & Ghanemi, Okay. Utility of molybdenum disulfide nanosheets adsorbent for simultaneous preconcentration and dedication of Cd(II), Pb(II), Zn(II) and Ni(II) in water samples. J. Iran. Chem. Soc. 10, 10. https://doi.org/10.1007/s13738-021-02289-7 (2021).
Javinezhad, S., Larki, A., Nikpour, Y. & Saghanezhad, S. J. Examine on the appliance of Cucurbit[6]uril as a nanoporous adsorbent for the elimination of two,4-dinitrophenol from wastewaters. Anal. Bioanal. Chem. Res. 5, 217–228. https://doi.org/10.22036/abcr.2018.113797.1180 (2018).
Shiralipour, R. & Larki, A. Pre-concentration and dedication of tartrazine dye from aqueous options utilizing modified cellulose nanosponges. Ecotoxicol. Environ. Saf. 135, 123–129. https://doi.org/10.1016/j.ecoenv.2016.09.038 (2017).
Pourreza, N., Parham, H. & Pourbati, M. A. Magnetic iron oxide nanoparticles modified by methyl trioctyl ammonium chloride as an adsorbent for the elimination of erythrosine from aqueous options. Desalin. Water Deal with. 57, 17454–17462. https://doi.org/10.1080/19443994.2015.1086892 (2016).
Liu, X. et al. Banana stem and leaf biochar as an efficient adsorbent for cadmium and lead in aqueous resolution. Sci. Rep. 12, 1584. https://doi.org/10.1038/s41598-022-05652-7 (2022).
Tuzen, M., Sari, A., Mendil, D. & Soylak, M. Biosorptive elimination of mercury(II) from aqueous resolution utilizing lichen (Xanthoparmelia conspersa) biomass: Kinetic and equilibrium research. J. Hazard. Mater. 169, 263–270. https://doi.org/10.1016/j.jhazmat.2009.03.096 (2009).
Yu, X.-L. & He, Y. Optimum ranges of variables for an efficient adsorption of lead(II) by the agricultural waste pomelo (Citrus grandis) peels utilizing Doehlert designs. Sci. Rep. 8, 729. https://doi.org/10.1038/s41598-018-19227-y (2018).
Zhao, X., Baharinikoo, L., Farahani, M. D., Mahdizadeh, B. & Farizhandi, A. A. Okay. Experimental modelling research on the elimination of dyes and heavy steel ions utilizing ZnFe2O4 nanoparticles. Sci. Rep. 12, 5987. https://doi.org/10.1038/s41598-022-10036-y (2022).
El-Bery, H. M., Saleh, M., El-Gendy, R. A., Saleh, M. R. & Thabet, S. M. Excessive adsorption capability of phenol and methylene blue utilizing activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep. 12, 5499. https://doi.org/10.1038/s41598-022-09475-4 (2022).
Mahvi, A. H., Balarak, D. & Bazrafshan, E. Exceptional reusability of magnetic Fe3O4-graphene oxide composite: A extremely efficient adsorbent for Cr(VI) ions. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/03067319.2021.1910250 (2021).
Cui, L. et al. EDTA functionalized magnetic graphene oxide for elimination of Pb(II), Hg(II) and Cu(II) in water remedy: Adsorption mechanism and separation property. Chem. Eng. J. 281, 1–10. https://doi.org/10.1016/j.cej.2015.06.043 (2015).
Alipour, A., Zarinabadi, S., Azimi, A. & Mirzaei, M. Adsorptive elimination of Pb(II) ions from aqueous options by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response floor methodology (RSM). Int. J. Biol. Macromol. 151, 124–135. https://doi.org/10.1016/j.ijbiomac.2020.02.109 (2020).
Ghasemi, E., Heydari, A. & Sillanpää, M. Superparamagnetic Fe3O4@EDTA nanoparticles as an environment friendly adsorbent for simultaneous elimination of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples. Microchem. J. 131, 51–56. https://doi.org/10.1016/j.microc.2016.11.011 (2017).
Lyu, F. et al. Environment friendly elimination of Pb(II) ions from aqueous resolution by modified purple mud. J. Hazard. Mater. 406, 124678. https://doi.org/10.1016/j.jhazmat.2020.124678 (2021).
Behbahani, E. S., Dashtian, Okay. & Ghaedi, M. Fe3O4–FeMoS4: Promise magnetite LDH-based adsorbent for simultaneous elimination of Pb (II), Cd (II), and Cu (II) heavy steel ions. J. Hazard. Mater. 410, 124560. https://doi.org/10.1016/j.jhazmat.2020.124560 (2021).
Ji, J., Chen, G. & Zhao, J. Preparation and characterization of amino/thiol bifunctionalized magnetic nanoadsorbent and its utility in fast elimination of Pb (II) from aqueous system. J. Hazard. Mater. 368, 255–263. https://doi.org/10.1016/j.jhazmat.2019.01.035 (2019).
Dai, Okay. et al. Even handed fabrication of bifunctionalized graphene oxide/MnFe2O4 magnetic nanohybrids for enhanced elimination of Pb(II) from water. J. Colloid Interface Sci. 579, 815–822. https://doi.org/10.1016/j.jcis.2020.06.085 (2020).
[ad_2]