Saturday, June 25, 2022
No menu items!
HomeHealth ScienceClinicopathologic spectrum of myeloid neoplasms with concurrent myeloproliferative neoplasm driver mutations and...

Clinicopathologic spectrum of myeloid neoplasms with concurrent myeloproliferative neoplasm driver mutations and SRSF2 mutations

[ad_1]

  • Kvasnicka, H. M., Thiele, J., Orazi, A., Attractive, H. P. & Bain, B. J. Myeloproliferative neoplasm, unclassifiable. In: S.H. Swerdlow et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 57–59 (IARC Lyon, 2017).

  • Orazi, A., Bennett, J. M., Bain, B. J., Baumann, I., Thiele, J., Bueso-Ramos, C. et al. Myelodysplastic I myeloproliferative neoplasm, unclassifiable. In: S.H. Swerdlow et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 95–96 (IARC: Lyon, 2017).

  • Grinfeld, J., Nangalia, J., Baxter, E. J., Wedge, D. C., Angelopoulos, N., Cantrill, R. et al. Classification and Customized Prognosis in Myeloproliferative Neoplasms. New England Journal of Medication 379, 1416–1430 (2018).

  • Papaemmanuil, E., Gerstung, M., Malcovati, L., Tauro, S., Gundem, G., Van Lavatory, P. et al. Medical and organic implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627; quiz 3699 (2013).

  • Yoshida, Okay., Sanada, M., Shiraishi, Y., Nowak, D., Nagata, Y., Yamamoto, R. et al. Frequent pathway mutations of splicing equipment in myelodysplasia. Nature 478, 64–69 (2011).

  • Kim, E., Ilagan, J. O., Liang, Y., Daubner, G. M., Lee, S. C., Ramakrishnan, A. et al. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Particular Results on Exon Recognition. Most cancers Cell 27, 617–630 (2015).

  • Patnaik, M. M., Lasho, T. L., Finke, C. M., Hanson, C. A., Hodnefield, J. M., Knudson, R. A. et al. Spliceosome mutations involving SRSF2, SF3B1, and U2AF35 in persistent myelomonocytic leukemia: prevalence, scientific correlates, and prognostic relevance. Am J Hematol 88, 201–206 (2013).

  • Makishima, H., Visconte, V., Sakaguchi, H., Jankowska, A. M., Abu Kar, S., Jerez, A. et al. Mutations within the spliceosome equipment, a novel and ubiquitous pathway in leukemogenesis. Blood 119, 3203–3210 (2012).

  • Wu, S. J., Kuo, Y. Y., Hou, H. A., Li, L. Y., Tseng, M. H., Huang, C. F. et al. The scientific implication of SRSF2 mutation in sufferers with myelodysplastic syndrome and its stability throughout illness evolution. Blood 120, 3106–3111 (2012).

  • Federmann, B., Abele, M., Rosero Cuesta, D. S., Vogel, W., Boiocchi, L., Kanz, L. et al. The detection of SRSF2 mutations in routinely processed bone marrow biopsies is beneficial within the analysis of persistent myelomonocytic leukemia. Hum Pathol 45, 2471–2479 (2014).

  • Vannucchi, A. M., Lasho, T. L., Guglielmelli, P., Biamonte, F., Pardanani, A., Pereira, A. et al. Mutations and prognosis in main myelofibrosis. Leukemia 27, 1861–1869 (2013).

  • Zhang, S. J., Rampal, R., Manshouri, T., Patel, J., Mensah, N., Kayserian, A. et al. Genetic evaluation of sufferers with leukemic transformation of myeloproliferative neoplasms reveals recurrent SRSF2 mutations which can be related to opposed end result. Blood 119, 4480–4485 (2012).

  • Chapman, J., Geyer, J. T., Khanlari, M., Moul, A., Casas, C., Connor, S. T. et al. Myeloid neoplasms with options intermediate between main myelofibrosis and persistent myelomonocytic leukemia. Mod Pathol 31, 429–441 (2018).

  • Gur, H. D., Loghavi, S., Garcia-Manero, G., Routbort, M., Kanagal-Shamanna, R., Quesada, A. et al. Power Myelomonocytic Leukemia With Fibrosis Is a Distinct Illness Subset With Myeloproliferative Options and Frequent JAK2 p.V617F Mutations. Am J Surg Pathol 42, 799–806 (2018).

  • Hu, Z., Ramos, C. E. B., Medeiros, L. J., Zhao, C., Yin, C. C., Li, S. et al. Utility of JAK2 V617F allelic burden in distinguishing persistent myelomonocytic Leukemia from Major myelofibrosis with monocytosis. Hum Pathol 85, 290–298 (2019).

  • WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. (IARC Lyon, 2017).

  • Della Porta, M. G., Travaglino, E., Boveri, E., Ponzoni, M., Malcovati, L., Papaemmanuil, E. et al. Minimal morphological standards for outlining bone marrow dysplasia: a foundation for scientific implementation of WHO classification of myelodysplastic syndromes. Leukemia 29, 66–75 (2015).

  • Thiele, J., Kvasnicka, H. M., Facchetti, F., Franco, V., van Der Walt, J. & Orazi, A. European consensus on grading bone marrow fibrosis and evaluation of cellularity. Haematologica 90, 1128–1132 (2005).

  • Khoury, J. D., Sen, F., Abruzzo, L. V., Hayes, Okay., Glassman, A. & Medeiros, L. J. Cytogenetic findings in blastoid mantle cell lymphoma. Hum Pathol 34, 1022–1029 (2003).

  • McGowan-Jordan J, S. A., Schmid M. ISCN 2016: An Worldwide System for Human Cytogenomic Nomenclature (2016). (Basel: S. Karger Publishing, 2016).

  • Okay, C. Y., Loghavi, S., Sui, D., Wei, P., Kanagal-Shamanna, R., Yin, C. C. et al. Persistent IDH1/2 mutations in remission can predict relapse in sufferers with acute myeloid leukemia. Haematologica 104, 305–311 (2019).

  • Lee, S. C., North, Okay., Kim, E., Jang, E., Obeng, E., Lu, S. X. et al. Artificial Deadly and Convergent Organic Results of Most cancers-Related Spliceosomal Gene Mutations. Most cancers Cell 34, 225-241 e228 (2018).

  • Taylor, J., Mi, X., North, Okay. D., Binder, M., Penson, A., Lasho, T. L. et al. Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Blood https://doi.org/10.1182/blood.2020006868 (2020).

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments