[ad_1]
Pandey, A. Ok., Pandey, S. D., Misra, V. & Srimal, A. Ok. Elimination of chromium and discount of toxicity to Microtox system from tannery effluent by means of calcium alginate beads containing humic acid. Chemosphere 51, 329–333 (2003).
Zhao, M. H., Xu, Y., Zhang, C. S. & Zeng, G. M. New traits in eradicating heavy metals from wastewater. Appl. Microbiol. Biotechnol. 100, 6509–6518 (2016).
Rostamnezhad, N., Kahforoushan, D., Sahraei, E., Ghanbarian, S. & Shabani, M. A technique for the elimination of Cu(II) from aqueous options by sulfide precipitation by using heavy oil fly ash. Desalin. Water Deal with. 57, 17593–17602 (2016).
Li, Y. J., Wang, W. Y., Zhou, L. Q., Liu, Y. Y. & Lin, X. Remediation of hexavalent chromium spiked soil by utilizing synthesized iron sulfide particles. Chemosphere 169, 131–138 (2017).
Fellenz, N. et al. Chromium (VI) elimination from water by way of adsorption-reduction on the floor of amino-functionalized MCM-41 sorbents. Microporous Mesoporous Mater. 239, 138–146 (2017).
Liu, X. et al. Graphene oxide-based supplies for environment friendly elimination of heavy steel ions from aqueous answer: A evaluation. Environ. Pollut. 25, 262–273 (2019).
Dubey, S., Shri, M., Gupta, A., Rani, V. & Chakrabarty, D. Toxicity and detoxing of heavy metals throughout plant progress and metabolism. Environ. Chem. Lett. 16, 1169–1192 (2018).
Krishna, B. S., Murty, D. S. R. & Prakash, B. S. J. Surfactant-modified clay as adsorbent for chromate. Appl. Clay Sci. 20, 65–71 (2001).
Spooren, J. et al. In-situ chromium and vanadium restoration of landfilled ferrochromium and stainless-steel slags. Chem. Eng. J. 303, 359–368 (2016).
Lu, J., Wang, Z. R., Liu, Y. L. & Tang, Q. Elimination of Cr ions from aqueous answer utilizing batch electrocoagulation: Cr elimination mechanism and utilization fee of in situ generated steel ions. Course of Saf. Environ. Prot. 104, 436–443 (2016).
Manikandan, M., Gopal, J., Kumaran, R. S., Kannan, V. & Chun, S. Purification and characterization of a extremely energetic chromate reductase from endophytic Bacillus sp DGV19 of Albizzia lebbeck (L.) Benth. actively concerned in phytoremediation of tannery effluent-contaminated websites. Prep. Biochem. Biotechnol. 46, 192–199 (2016).
Kowalik-Klimczak, A., Zalewski, M. & Gierycz, P. Elimination of Cr(III) ions from salt answer by nanofiltration: Experimental and modelling evaluation. Pol. J. Chem. Technol. 18, 10–16 (2016).
Sreedharan, V., Krithishna, Ok.V. & Nidheesh, P.V. Elimination of chromium and iron from actual textile wastewater by sorption on soils. J. Hazard. Poisonous Radioact. Waste 21, UNSP 06017002 (2017).
Bhateria, R. & Singh, R. A evaluation on nanotechnological utility of magnetic iron oxides for heavy steel elimination. J. Water Course of Eng. 31, 100845 (2019).
Bora, A. J. & Dutta, R. Ok. Elimination of metals (Pb, Cd, Cu, Cr, Ni, and Co) from ingesting water by oxidation-coagulation-absorption at optimized pH. J. Water Course of Eng. 31, 100839 (2019).
He, Y. Z., Cervera, M. L., Ecija, M. I. G. & Guardia, M. On-line bidirectional electrostacking of chromium(III) and chromium(VI) for flame atomic absorption spectrometry willpower. Anal. Chim Acta 421, 57–65 (2000).
Dermentzis, Ok., Marmanis, D., Christoforidis, A. & Moumtzakis, A. Photovoltaic electrocoagulation course of for remediation of chromium plating wastewaters. Desalin. Water Deal with. 56, 1413–1418 (2015).
Di Palma, L., Gueye, M. T. & Petrucci, E. Hexavalent chromium discount in contaminated soil: A comparability between ferrous sulphate and nanoscale zero-valent iron. J. Hazard. Mater. 281, 70–76 (2015).
Korak, J. A., Huggins, R. & Arias-Paic, M. Regeneration of pilot-scale ion alternate columns for hexavalent chromium elimination. Water Res. 118, 141–151 (2017).
Ramya, V., Murugan, D., Lajapathirai, C., Saravanan, P. & Sivasamy, A. Elimination of poisonous pollution utilizing tannery sludge derived mesoporous activated carbon: Experimental and modelling research. J. Environ. Chem. Eng. 7, UNSP 102798 (2019).
Bilici, Z., Işık, Z., Aktas, Y., Yatmaz, H. C. & Dizge, N. Photocatalytic impact of zinc oxide and magnetite entrapped calcium alginate beads for azo dye and hexavalent chromium elimination from options. J. Water Course of Eng. 31, 100826 (2019).
Gando-Ferreira, L. M., Marques, J. C. & Quina, M. J. Integration of ion-exchange and nanofiltration processes for recovering Cr(III) salts from artificial tannery wastewater. Environ. Technol. 36, 2340–2348 (2015).
Ahmed, E., Abdulla, H. M., Mohamed, A. H. & El-Bassuony, A. D. Remediation and recycling of chromium from tannery wastewater utilizing mixed chemical–organic remedy system. Course of Saf. Environ. Prot. 104, 1–10 (2016).
Sirianuntapiboon, S. & Chaochon, A. Impact of Cr3+ on the effectivity and efficiency of the sequencing batch reactor (SBR) system for remedy of tannery industrial wastewater. Desalin. Water Deal with. 57, 5579–5591 (2016).
Bhattacharya, P., Majumdar, S., Bandyopadhyay, S. & Ghosh, S. Recycling of tannery effluent from widespread effluent remedy plant utilizing ceramic membrane primarily based filtration course of: A closed loop strategy utilizing pilot scale research. Environ. Prog. Maintain. Power 35, 60–69 (2016).
Ma, H. R. et al. Chromium restoration from tannery sludge by bioleaching and its reuse in tanning course of. J. Clear. Prod. 142, 2752–2760 (2017).
Beattie, H. et al. The usage of bio-monitoring to evaluate publicity within the electroplating business. J. Publicity Sci. Environ. Epidemiol. 27, 47–55 (2017).
Wei, Y. F., Fang, Z. Q., Zheng, L. C. & Tsang, E. P. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism within the hexavalent chromium elimination. Appl. Surf. Sci. 399, 322–329 (2017).
Santander, P. et al. Elimination of Cr(VI) from aqueous answer by a extremely environment friendly chelating resin. Polym. Bull. 74, 2033–2044 (2017).
Tseng, C. H., Lee, I. H. & Chen, Y. C. Analysis of hexavalent chromium focus in water and its well being threat with a system dynamics mannequin. Sci. Complete Environ. 669, 103–111 (2019).
Huarache, S. V. Z., Sanchez, C. Ok. R., Gonza, A. P. D., Huaco, F. D. T. & Rivera, A. M. L. Design and testing of a cost-efficient bioremediation system for tannery effluents utilizing native chromium resistant filamentous fungi. Int. J. Environ. Sci. Technol. 17, 3825–3834 (2020).
Kratochvil, D., Pimentel, P. & Volesky, B. Elimination of trivalent and hexavalent chromium by seaweed biosorbent. Environ. Sci. Technol. 32, 2693–2698 (1998).
Fu, F. et al. Chromium elimination utilizing resin supported nanoscale zero-valent iron. J. Environ. Manag. 128, 822–827 (2013).
Kocurek, P., Kolomazník, Ok., Barinova, M. & Hendrych, J. Complete management of chromium in tanneries—Thermal decomposition of filtration cake from enzymatic hydrolysis of chrome shavings. Waste Manag. Res. 35, 1–6 (2017).
Religa, P., Kazmierczak, B. & Gierycz, P. Methods for chromium recirculation in tanneries. Desalin. Water Deal with. 64, 414–418 (2017).
Jiao, F., Li, W., Xue, Ok., Yang, C. & Qin, W. Restoration of chromium and magnesium from spent magnesia-chrome refractories by acid leaching mixed with alkali precipitation and evaporation. Sep. Purif. Technol. 227, 115705 (2019).
Petruzzelli, D., Trivanti, G. & Passino, R. Cr(III)/A1(III)/Fe(III) ion binding on blended mattress ion exchangers: Synergistic results of the resins behaviour. React. Funct. Polym. 31, 179–185 (1996).
Kocaoba, S. Adsorption of Cd(II), Cr(III) and Mn(II) on pure sepiolite. Desalination 244, 24–30 (2009).
Diaz, C. E. B., Lugo, V. L. & Bilyeu, B. A evaluation of chemical, electrochemical and organic strategies for aqueous Cr(VI) discount. J. of Hazard. Mater. 223–224, 1–12 (2012).
Mahmoud, M. R. & Lazaridis, N. Ok. Simultaneous elimination of nickel(II) and chromium(VI) from aqueous options and simulated wastewaters by foam separation. Sep. Sci. Technol. 50, 1421–1432 (2015).
Cimen, A. Elimination of chromium from wastewater by reverse osmosis. Russ. J. Phys. Chem. A 89, 1238–1243 (2015).
Chiha, M., Ahmedchekkat, F. & Al-Bsoul, A. Elimination of chromium(III) from aqueous options utilizing a complicated extraction method (AET). Desalin. Water Deal with. 57, 5567–5578 (2016).
Garba, M. D., Usman, M., Mazumder, M. A. J., Al-Ahmed, A. & Inamuddin, A. Complexing brokers for steel elimination utilizing ultrafiltration membranes: A evaluation. Environ. Chem. Lett. 17, 1195–1208 (2019).
Ye, Z.X., Yin, X.B., Chen, L.F., He, X.Y., Lin, Z.M., Liu, C.C., Ning, S.Y., Wang, X.P. & Wei, Y.Z. An built-in course of for elimination and restoration of Cr(VI) from electroplating wastewater by ion alternate and reduction-precipitation primarily based on a silica-supported pyridine resin. J. Clear. Product. 236, UNSP 117631 (2019).
Kocaoba, S. & Arısoy, M. Steady some metals elimination from aqueous options by biomass in packed-bed column. Fresenius Environ. Bull. 28, 813–817 (2019).
Mohammeda, Ok. & Sahu, O. Restoration of chromium from tannery business waste water by membrane separation know-how: Well being and engineering facets. Sci. Afr. 4, e00096 (2019).
Kocaoba, S. & Akcin, G. Elimination and restoration of chromium and chromium speciation with MINTEQA2. Talanta 57, 23–30 (2002).
Kocaoba, S. & Akcin, G. A kinetic investigation of chromium. Adsorption 9, 143–151 (2003).
Sahu, S. Ok., Meshram, P., Pandey, B. D., Kumar, V. & Mankhand, T. R. Elimination of chromium(III) by cation alternate resin, Indion 790 for tannery waste remedy. Hydrometallurgy 99, 170–174 (2009).
Ahmad, T. et al. Ion alternate elimination of chromium(III) from tannery wastes by utilizing a powerful acid cation alternate resin Amberlite IR-120 H+ and its hybrids. J. Chem. Soc. Pak. 36, 818–828 (2014).
Rivas, B. L., Morales, D. V., Kabay, N. & Bryjak, M. Cr(III) elimination from aqueous answer by ion alternate resins containing carboxylic acid and sulphonic acid teams. J. Chilean Chem. Soc. 63, 4012–4018 (2018).
Tran, H. N. et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A scientific in-depth evaluation. J. Hazard. Mater. 373, 258–270 (2019).
Kocaoba, S. Adsorption of Fe(II) and Fe(III) from aqueous answer by utilizing sepiolite: Speciation research with MINEQL+ pc program. Sep. Sci. Technol. 55, 896–906 (2020).
Holl, W. H., Horst, J. & Wernet, M. Utility of the floor complex-formation mannequin to alternate equilibria on ion-exchange resins 2. Chelating resins. React. Polym. 14, 251–261 (1991).
Petruzzelli, D., Passino, R. & Trivanti, G. Ion-exchange course of for chromium elimination and restoration from tannery wastes. Ind. Eng. Chem. Res. 34, 2612–2617 (1995).
Saha, B. & Streat, M. Adsorption of hint heavy metals: Utility of floor complexation concept to a macroporous polymer and a weakly acidic ion-exchange resin. Ind. Eng. Chem. Res. 44, 8671–8681 (2005).
Gu, X., Evans, L. J. & Barabash, S. J. Modeling the adsorption of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) onto montmorillonite. Geochim. Cosmochim. Acta 74, 5718–5728 (2010).
Kwon, Ok. D., Refson, Ok. & Sposito, G. Floor complexation of Pb(II) by hexagonal birnessite nanoparticles. Geochim. Cosmochim. Acta 74, 6731–6740 (2010).
Lv, J., Luo, L., Zhang, J., Christie, P. & Zhang, S. Adsorption of mercury on lignin: Mixed floor complexation modeling and X-ray absorption spectroscopy research. Environ. Pollut. 162, 255–261 (2012).
Kalinitchev, A. I. Trendy concept for multicomponent ion alternate equilibria and chromatographic system behaviour in columns. Solvent Extr. Ion Exch. 30, 380–387 (2012).
Veselska, V. et al. Chromate adsorption on chosen soil minerals: Floor complexation modeling coupled with spectroscopic investigation. J. Hazard. Mater. 318, 433–442 (2016).
Jeon, C. & Hoell, W. H. Utility of the floor complexation mannequin to heavy steel sorption equilibria onto aminated chitosan. Hydrometallurgy 71, 421–428 (2004).
Kiefer, R., Kalinitchev, A. I. & Höll, W. H. Column efficiency of ion alternate resins with aminophosphonate practical teams for elimination of heavy metals. React. Funct. Polym. 67, 1421–1432 (2007).
Kocaoba, S. Adsorption of Nickel(II) and Cobalt(II) ions and utility of floor advanced formation mannequin to ion alternate equilibria. Environ. Eng. Sci. 25, 697–702 (2008).
Cetin, G., Kocaoba, S., Höll, W. H. & Akcin, G. Cation alternate equilibria with chromium (III) species by sturdy acid ion exchangers. Solvent Extr. Ion Exch. 30, 88–100 (2012).
Holl, W.H., Franzreb, M., Horst, J. & Eberle, S.H. Description of ion alternate equilibria by way of the floor complexation concept. in (Marinsky, J.A., Marcus, Y. eds.) Ion Trade and Solvent Extraction. A Collection of Advances. Chap. 3. 151–209. (Marcel Dekker Inc., 1993).
Serrano, S., O’Day, P. A., Vlassopoulos, D., Gonzalez, M. T. G. & Garrido, F. A floor complexation and ion alternate mannequin of Pb and Cd aggressive sorption on pure soils. Geochim. Cosmochim. Acta 73, 543–558 (2009).
Marchi, G. et al. Floor complexation modeling in variable cost soils: Prediction of cadmium adsorption. Rev. Bras. Ci Solo 39, 1395–1405 (2015).
Vlasova, N. N. & Markitan, O. V. Floor complexation modeling of biomolecule adsorptions onto Titania. Colloids Interfaces 3, 28 (2019).
Stöhr, C., Horst, J. & Hoell, W. H. Utility of the floor advanced formation mannequin to ion alternate equilibria—Half V. Adsorption of heavy steel salts onto weakly primary anion exchangers. React. Funct. Polym. 49, 117–132 (2001).
Kalinichev, A. I. & Hoell, W. H. Modeling of sorption dynamics in transition steel ion-weak-base ion exchanger programs by way of floor complexation concept. Theor. Discovered. Chem. Eng. 38, 284–290 (2004).
Landry, C. J., Koretsky, C. M., Lund, T. J., Schaller, M. & Das, S. Floor complexation modeling of Co(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. Geochim. Cosmochim. Acta 73, 3723–3737 (2009).
Wei, Z. & Semiat, R. Making use of a modified Donnan mannequin to explain the floor complexation of chromate to iron oxyhydroxide agglomerates with heteromorphous pores. J. Colloid Interface Sci. 506, 66–75 (2017).
Ma, S. C., Zhang, J. L., Solar, D. H. & Liu, G. X. Floor complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite. Appl. Surf. Sci. 359, 48–54 (2015).
Reich, T. J., Soumya, D., Koretsky, C. M., Lund, T. J. & Landry, C. J. Floor complexation modeling of Pb(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. Chem. Geol. 275, 262–271 (2010).
Wang, Z. & Giammar, D. E. Mass motion expressions for bidentate adsorption in floor complexation modeling: Concept and apply. Environ. Sci. Technol. 47, 3982–3996 (2013).
Gustafsson, J.P., Persson, I., Oromieh, A.G., Schaik, J.W.J., Sjöstedt, C. & Kleja, D.B. Chromium(III) complexation to pure natural matter: Mechanisms and modeling. Environ. Sci. Technol. 48, 1753–1761 (2014)
Xie, J. Y., Gu, X. Y., Tong, F., Zhao, Y. P. & Tan, Y. Y. Floor complexation modeling of Cr(VI) adsorption on the goethite-water interface. J. Colloid Interface Sci. 455, 55–62 (2015).
Zhang, C. et al. Floor complexation of heavy steel cations on clay edges: Insights from first ideas molecular dynamics simulation of Ni(II). Geochim. Cosmochim. Acta 203, 54–68 (2017).
Gelabert, A., Pokrovsky, O. S., Schott, J. & Feurtet-Mazel, A. Floor complexation modeling of interactions between freshwater and marine diatom species and hint components (Mo, W, Cr, Ge, Ga, Al). Chem. Geol. 494, 117–126 (2018).
[ad_2]