[ad_1]
Li, X. et al. Saliva-derived microcosm biofilms grown on completely different oral surfaces in vitro. NPJ Biofilms Microbiomes 7, 1–8 (2021).
Mahnert, A. et al. Man-made microbial resistances in constructed environments. Nat. Commun. 10, 1–12 (2019).
Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competitors: Surviving and thriving within the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).
Peters, B. M., Jabra-Rizk, M. A., O’Might, G. A., Costerton, J. W. & Shirtliff, M. E. Polymicrobial interactions: Influence on pathogenesis and human illness. Clin. Microbiol. Rev. 25, 193–213 (2012).
Donlan, R. M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 8, 881 (2002).
Gebreyohannes, G., Nyerere, A., Bii, C. & Sbhatu, D. B. Challenges of intervention, remedy, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 5, e02192 (2019).
Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Corridor-Stoodley, L. Concentrating on microbial biofilms: Present and potential therapeutic methods. Nat. Rev. Microbiol. 15, 740–755 (2017).
Singh, S., Singh, S. Okay., Chowdhury, I. & Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial brokers. Open Microbiol. J. 11, 53 (2017).
Faix, R. & Kovarik, S. Polymicrobial sepsis amongst intensive care nursery infants. J. Perinatol. 9, 131–136 (1989).
Mohan, R. et al. A microfluidic method to check the impact of bacterial interactions on antimicrobial susceptibility in polymicrobial cultures. RSC Adv. 5, 35211–35223 (2015).
Brown, S. P., Hochberg, M. E. & Grenfell, B. T. Does a number of an infection choose for raised virulence?. Tendencies Microbiol. 10, 401–405 (2002).
Rodrigues, M. E., Gomes, F. & Rodrigues, C. F. Candida spp./micro organism combined biofilms. J. Fungi 6, 5 (2020).
Shirtliff, M. E., Peters, B. M. & Jabra-Rizk, M. A. Cross-kingdom interactions: Candida albicans and micro organism. FEMS Microbiol. Lett. 299, 1–8 (2009).
Carolus, H., Van Dyck, Okay. & Van Dijck, P. Candida albicans and Staphylococcus species: A threatening twosome. Entrance. Microbiol. 10, 2162 (2019).
Khan, F. et al. Blended biofilms of pathogenic Candida-bacteria: Regulation mechanisms and remedy methods. Crit. Rev. Microbiol. 47, 1–29 (2021).
Oogai, Y. et al. Expression of virulence elements by Staphylococcus aureus grown in serum. Appl. Environ. Microbiol. 77, 8097–8105 (2011).
Khan, F. et al. Suppression of hyphal formation and virulence of Candida albicans by pure and artificial compounds. Biofouling 37, 626–655 (2021).
Peters, B. M. et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. J. Microbiol. 158, 2975 (2012).
Harriott, M. M. & Noverr, M. C. Candida albicans and Staphylococcus aureus type polymicrobial biofilms: Results on antimicrobial resistance. Antimicrob. Brokers Chemother. 53, 3914–3922 (2009).
Todd, O. A. et al. Candida albicans augments Staphylococcus aureus virulence by participating the staphylococcal agr quorum sensing system. MBio 10, e00910-00919 (2019).
Peters, B. M. & Noverr, M. C. Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect. Immun. 81, 2178–2189 (2013).
Todd, O. A. & Peters, B. M. Candida albicans and Staphylococcus aureus pathogenicity and polymicrobial interactions: Classes past Koch’s postulates. J. Fungi 5, 81 (2019).
Krause, J., Geginat, G. & Tammer, I. Prostaglandin E2 from Candida albicans stimulates the expansion of Staphylococcus aureus in combined biofilms. PLoS One 10, e0135404 (2015).
Rusconi, R. & Stocker, R. Microbes in circulation. Curr. Opin. Microbiol. 25, 1–8 (2015).
Kou, S., Cheng, D., Solar, F. & Hsing, I.-M. Microfluidics and microbial engineering. Lab Chip 16, 432–446 (2016).
Kim, J., Park, H.-D. & Chung, S. Microfluidic approaches to bacterial biofilm formation. Molecules 17, 9818–9834 (2012).
Crabbé, A. et al. Use of the rotating wall vessel expertise to check the impact of shear stress on progress behaviour of Pseudomonas aeruginosa PA01. Environ. Microbiol. 10, 2098–2110 (2008).
Pérez-Rodríguez, S., García-Aznar, J. M. & Gonzalo-Asensio, J. Microfluidic gadgets for finding out bacterial taxis, drug testing and biofilm formation. Microb. Biotechnol. 15, 395–414 (2022).
Straub, H. et al. A microfluidic platform for in situ investigation of biofilm formation and its remedy below managed circumstances. J. Nanobiotechnol. 18, 1–12 (2020).
Kim, Okay. P. et al. In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic machine. Lab Chip 10, 3296–3299 (2010).
Yawata, Y. et al. Monitoring biofilm improvement in a microfluidic machine utilizing modified confocal reflection microscopy. J. Biosci. 110, 377–380 (2010).
Holman, H.-Y.N. et al. Actual-time chemical imaging of bacterial exercise in biofilms utilizing open-channel microfluidics and synchrotron FTIR spectromicroscopy. J. Anal. Chem. 81, 8564–8570 (2009).
Tremblay, Y. D., Vogeleer, P., Jacques, M. & Harel, J. Excessive-throughput microfluidic methodology to check biofilm formation and host–pathogen interactions in pathogenic Escherichia coli. Appl. Environ. Microbiol. 81, 2827–2840 (2015).
Nance, W. C. et al. A high-throughput microfluidic dental plaque biofilm system to visualise and quantify the impact of antimicrobials. J. Antimicrob. Chemother. 68, 2550–2560 (2013).
Hansen, M. F., Torp, A. M., Madsen, J. S., Røder, H. L. & Burmølle, M. Fluidic resistance management permits high-throughput institution of mixed-species biofilms. Biotechniques 66, 235–239 (2019).
Kasetty, S., Mould, D. L., Hogan, D. A. & Nadell, C. D. Each Pseudomonas aeruginosa and Candida albicans accumulate better biomass in dual-species biofilms below circulation. mSphere 6, e00416-00421 (2021).
Tran, V. N., Dasagrandhi, C., Truong, V. G., Kim, Y.-M. & Kang, H. W. Antibacterial exercise of Staphylococcus aureus biofilm below mixed publicity of glutaraldehyde, near-infrared mild, and 405-nm laser. PLoS One 13, e0202821 (2018).
Stott, S. L. et al. Isolation of circulating tumor cells utilizing a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U.S.A. 107, 18392–18397 (2010).
Khomtchouk, Okay. et al. Quantitative evaluation of bacterial progress part using circulation cytometry. J. Microbiol. Strategies 167, 105760 (2019).
Wang, L., Fan, D., Chen, W. & Terentjev, E. M. Bacterial progress, detachment and cell measurement management on polyethylene terephthalate surfaces. Sci. Rep. 5, 1–11 (2015).
Petrova, O. E. & Sauer, Okay. Sticky conditions: Key parts that management bacterial floor attachment. J. Bacteriol. 194, 2413–2425 (2012).
Hancock, V., Witsø, I. L. & Klemm, P. Biofilm formation as a perform of adhesin, progress medium, substratum and pressure kind. J. Med. Microbiol. 301, 570–576 (2011).
Merritt, J. H., Kadouri, D. E. & O’Toole, G. A. Rising and analyzing static biofilms. Curr. Protoc. Microbiol. 22, 1B – 1 (2011).
Kabir, M. A., Hussain, M. A. & Ahmad, Z. Candida albicans: A mannequin organism for finding out fungal pathogens. Int. Sch. Res. Notices 2012, 538694 (2012).
Peters, B. M. et al. Microbial interactions and differential protein expression in Staphylococcus aureus–Candida albicans dual-species biofilms. FEMS Microbiol. Immunol. 59, 493–503 (2010).
Peters, B. M., Ward, R. M., Rane, H. S., Lee, S. A. & Noverr, M. C. Efficacy of ethanol towards Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob. Brokers Chemother. 57, 74–82 (2013).
Lara, H. H. & Lopez-Ribot, J. L. Inhibition of combined biofilms of Candida albicans and methicillin-resistant Staphylococcus aureus by positively charged silver nanoparticles and functionalized silicone elastomers. Pathogens 9, 784 (2020).
Zago, C. E. et al. Dynamics of biofilm formation and the interplay between Candida albicans and methicillin-susceptible (MSSA) and-resistant Staphylococcus aureus (MRSA). PLoS One 10, e0123206 (2015).
Lin, Y. J. et al. Interactions between Candida albicans and Staphylococcus aureus inside combined species biofilms. Bios 84, 30–39 (2013).
Tambone, E. et al. Counter-acting Candida albicans–Staphylococcus aureus combined biofilm on titanium implants utilizing microbial biosurfactants. Polymers 13, 2420 (2021).
Venkateswarlu, Okay. et al. Three-dimensional imaging and quantification of real-time cytosolic calcium oscillations in microglial cells cultured on electrospun matrices utilizing laser scanning confocal microscopy. Biotechnol. Bioeng. 117, 3108–3123 (2020).
Schlafer, S., Kamp, A. & Garcia, J. E. A confocal microscopy based mostly methodology to watch extracellular pH in fungal biofilms. FEMS Yeast Res. 18, foy049 (2018).
von Ohle, C. et al. Actual-time microsensor measurement of native metabolic actions in ex vivo dental biofilms uncovered to sucrose and handled with chlorhexidine. Appl. Environ. Microbiol. 76, 2326–2334 (2010).
Pousti, M., Zarabadi, M. P., Amirdehi, M. A., Paquet-Mercier, F. & Greener, J. Microfluidic bioanalytical circulation cells for biofilm research: A assessment. Analyst 144, 68–86 (2019).
Liu, X. et al. Actual-time mapping of a hydrogen peroxide focus profile throughout a polymicrobial bacterial biofilm utilizing scanning electrochemical microscopy. Proc. Natl. Acad. Sci. U.S.A. 108, 2668–2673 (2011).
Dige, I., Baelum, V., Nyvad, B. & Schlafer, S. Monitoring of extracellular pH in younger dental biofilms grown in vivo within the presence and absence of sucrose. J. Oral Microbiol. 8, 30390 (2016).
Choong, F. X. et al. A semi high-throughput methodology for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces. Biofilm 3, 100060 (2021).
DelMain, E. A. et al. Stochastic expression of Sae-dependent virulence genes throughout Staphylococcus aureus biofilm improvement depends on SaeS. MBio 11, e03081-03019 (2020).
Quick, B. et al. Investigating the transcriptome of Candida albicans in a dual-species Staphylococcus aureus biofilm mannequin. Entrance. Cell. Infect. Microbiol. 1142 (2021).
Lee, J.-H. et al. Inhibition of biofilm formation by Candida albicans and polymicrobial microorganisms by nepodin by way of hyphal-growth suppression. ACS Infect. Dis. 5, 1177–1187 (2019).
Forbes, T. P. & Kralj, J. G. Engineering and evaluation of floor interactions in a microfluidic herringbone micromixer. Lab Chip 12, 2634–2637 (2012).
Sakamoto, C. et al. Fast quantification of bacterial cells in potable water utilizing a simplified microfluidic machine. J. Microbiol. Strategies 68, 643–647 (2007).
Richter, L. et al. Improvement of a microfluidic biochip for on-line monitoring of fungal biofilm dynamics. Lab Chip 7, 1723–1731 (2007).
Younger, E. W. & Simmons, C. A. Macro-and microscale fluid circulation methods for endothelial cell biology. Lab Chip 10, 143–160 (2010).
Petrochenko, P. E. et al. Analytical issues for measuring the globule measurement distribution of cyclosporine ophthalmic emulsions. Int. J. Pharm. 550, 229–239 (2018).
Tinevez, J.-Y. et al. TrackMate: An open and extensible platform for single-particle monitoring. Strategies 115, 80–90 (2017).
Tran, V. N. et al. Opto-chemical remedy for enhanced high-level disinfection of mature bacterial biofilm in a Teflon-based endoscope mannequin. Biomed. Choose. Specific 12, 5736–5750 (2021).
Staffa, S. J. & Zurakowski, D. Methods in adjusting for a number of comparisons: A primer for pediatric surgeons. J. Pediatr. Surg. 55, 1699–1705 (2020).
Tran, V. N. et al. Collective bacterial disinfection by opto-chemical remedy on mature biofilm in medical endoscope. J. Photochem. Photobiol. B Biol. 226, 112367 (2022).
[ad_2]