Saturday, June 25, 2022
No menu items!
HomeMicrobiologyActual-time monitoring of mono- and dual-species biofilm formation and eradication utilizing microfluidic...

Actual-time monitoring of mono- and dual-species biofilm formation and eradication utilizing microfluidic platform

[ad_1]

  • Li, X. et al. Saliva-derived microcosm biofilms grown on completely different oral surfaces in vitro. NPJ Biofilms Microbiomes 7, 1–8 (2021).


    Google Scholar
     

  • Mahnert, A. et al. Man-made microbial resistances in constructed environments. Nat. Commun. 10, 1–12 (2019).

    CAS 

    Google Scholar
     

  • Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competitors: Surviving and thriving within the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, B. M., Jabra-Rizk, M. A., O’Might, G. A., Costerton, J. W. & Shirtliff, M. E. Polymicrobial interactions: Influence on pathogenesis and human illness. Clin. Microbiol. Rev. 25, 193–213 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donlan, R. M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 8, 881 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebreyohannes, G., Nyerere, A., Bii, C. & Sbhatu, D. B. Challenges of intervention, remedy, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 5, e02192 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Corridor-Stoodley, L. Concentrating on microbial biofilms: Present and potential therapeutic methods. Nat. Rev. Microbiol. 15, 740–755 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, S., Singh, S. Okay., Chowdhury, I. & Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial brokers. Open Microbiol. J. 11, 53 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faix, R. & Kovarik, S. Polymicrobial sepsis amongst intensive care nursery infants. J. Perinatol. 9, 131–136 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Mohan, R. et al. A microfluidic method to check the impact of bacterial interactions on antimicrobial susceptibility in polymicrobial cultures. RSC Adv. 5, 35211–35223 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Brown, S. P., Hochberg, M. E. & Grenfell, B. T. Does a number of an infection choose for raised virulence?. Tendencies Microbiol. 10, 401–405 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues, M. E., Gomes, F. & Rodrigues, C. F. Candida spp./micro organism combined biofilms. J. Fungi 6, 5 (2020).

    CAS 

    Google Scholar
     

  • Shirtliff, M. E., Peters, B. M. & Jabra-Rizk, M. A. Cross-kingdom interactions: Candida albicans and micro organism. FEMS Microbiol. Lett. 299, 1–8 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Carolus, H., Van Dyck, Okay. & Van Dijck, P. Candida albicans and Staphylococcus species: A threatening twosome. Entrance. Microbiol. 10, 2162 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, F. et al. Blended biofilms of pathogenic Candida-bacteria: Regulation mechanisms and remedy methods. Crit. Rev. Microbiol. 47, 1–29 (2021).


    Google Scholar
     

  • Oogai, Y. et al. Expression of virulence elements by Staphylococcus aureus grown in serum. Appl. Environ. Microbiol. 77, 8097–8105 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, F. et al. Suppression of hyphal formation and virulence of Candida albicans by pure and artificial compounds. Biofouling 37, 626–655 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Peters, B. M. et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. J. Microbiol. 158, 2975 (2012).

    CAS 

    Google Scholar
     

  • Harriott, M. M. & Noverr, M. C. Candida albicans and Staphylococcus aureus type polymicrobial biofilms: Results on antimicrobial resistance. Antimicrob. Brokers Chemother. 53, 3914–3922 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todd, O. A. et al. Candida albicans augments Staphylococcus aureus virulence by participating the staphylococcal agr quorum sensing system. MBio 10, e00910-00919 (2019).


    Google Scholar
     

  • Peters, B. M. & Noverr, M. C. Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect. Immun. 81, 2178–2189 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todd, O. A. & Peters, B. M. Candida albicans and Staphylococcus aureus pathogenicity and polymicrobial interactions: Classes past Koch’s postulates. J. Fungi 5, 81 (2019).

    CAS 

    Google Scholar
     

  • Krause, J., Geginat, G. & Tammer, I. Prostaglandin E2 from Candida albicans stimulates the expansion of Staphylococcus aureus in combined biofilms. PLoS One 10, e0135404 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rusconi, R. & Stocker, R. Microbes in circulation. Curr. Opin. Microbiol. 25, 1–8 (2015).

    PubMed 

    Google Scholar
     

  • Kou, S., Cheng, D., Solar, F. & Hsing, I.-M. Microfluidics and microbial engineering. Lab Chip 16, 432–446 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J., Park, H.-D. & Chung, S. Microfluidic approaches to bacterial biofilm formation. Molecules 17, 9818–9834 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crabbé, A. et al. Use of the rotating wall vessel expertise to check the impact of shear stress on progress behaviour of Pseudomonas aeruginosa PA01. Environ. Microbiol. 10, 2098–2110 (2008).

    PubMed 

    Google Scholar
     

  • Pérez-Rodríguez, S., García-Aznar, J. M. & Gonzalo-Asensio, J. Microfluidic gadgets for finding out bacterial taxis, drug testing and biofilm formation. Microb. Biotechnol. 15, 395–414 (2022).

    PubMed 

    Google Scholar
     

  • Straub, H. et al. A microfluidic platform for in situ investigation of biofilm formation and its remedy below managed circumstances. J. Nanobiotechnol. 18, 1–12 (2020).


    Google Scholar
     

  • Kim, Okay. P. et al. In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic machine. Lab Chip 10, 3296–3299 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Yawata, Y. et al. Monitoring biofilm improvement in a microfluidic machine utilizing modified confocal reflection microscopy. J. Biosci. 110, 377–380 (2010).

    CAS 

    Google Scholar
     

  • Holman, H.-Y.N. et al. Actual-time chemical imaging of bacterial exercise in biofilms utilizing open-channel microfluidics and synchrotron FTIR spectromicroscopy. J. Anal. Chem. 81, 8564–8570 (2009).

    CAS 

    Google Scholar
     

  • Tremblay, Y. D., Vogeleer, P., Jacques, M. & Harel, J. Excessive-throughput microfluidic methodology to check biofilm formation and host–pathogen interactions in pathogenic Escherichia coli. Appl. Environ. Microbiol. 81, 2827–2840 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nance, W. C. et al. A high-throughput microfluidic dental plaque biofilm system to visualise and quantify the impact of antimicrobials. J. Antimicrob. Chemother. 68, 2550–2560 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, M. F., Torp, A. M., Madsen, J. S., Røder, H. L. & Burmølle, M. Fluidic resistance management permits high-throughput institution of mixed-species biofilms. Biotechniques 66, 235–239 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kasetty, S., Mould, D. L., Hogan, D. A. & Nadell, C. D. Each Pseudomonas aeruginosa and Candida albicans accumulate better biomass in dual-species biofilms below circulation. mSphere 6, e00416-00421 (2021).


    Google Scholar
     

  • Tran, V. N., Dasagrandhi, C., Truong, V. G., Kim, Y.-M. & Kang, H. W. Antibacterial exercise of Staphylococcus aureus biofilm below mixed publicity of glutaraldehyde, near-infrared mild, and 405-nm laser. PLoS One 13, e0202821 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stott, S. L. et al. Isolation of circulating tumor cells utilizing a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. U.S.A. 107, 18392–18397 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khomtchouk, Okay. et al. Quantitative evaluation of bacterial progress part using circulation cytometry. J. Microbiol. Strategies 167, 105760 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L., Fan, D., Chen, W. & Terentjev, E. M. Bacterial progress, detachment and cell measurement management on polyethylene terephthalate surfaces. Sci. Rep. 5, 1–11 (2015).


    Google Scholar
     

  • Petrova, O. E. & Sauer, Okay. Sticky conditions: Key parts that management bacterial floor attachment. J. Bacteriol. 194, 2413–2425 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hancock, V., Witsø, I. L. & Klemm, P. Biofilm formation as a perform of adhesin, progress medium, substratum and pressure kind. J. Med. Microbiol. 301, 570–576 (2011).

    CAS 

    Google Scholar
     

  • Merritt, J. H., Kadouri, D. E. & O’Toole, G. A. Rising and analyzing static biofilms. Curr. Protoc. Microbiol. 22, 1B – 1 (2011).


    Google Scholar
     

  • Kabir, M. A., Hussain, M. A. & Ahmad, Z. Candida albicans: A mannequin organism for finding out fungal pathogens. Int. Sch. Res. Notices 2012, 538694 (2012).


    Google Scholar
     

  • Peters, B. M. et al. Microbial interactions and differential protein expression in Staphylococcus aureus–Candida albicans dual-species biofilms. FEMS Microbiol. Immunol. 59, 493–503 (2010).

    CAS 

    Google Scholar
     

  • Peters, B. M., Ward, R. M., Rane, H. S., Lee, S. A. & Noverr, M. C. Efficacy of ethanol towards Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob. Brokers Chemother. 57, 74–82 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lara, H. H. & Lopez-Ribot, J. L. Inhibition of combined biofilms of Candida albicans and methicillin-resistant Staphylococcus aureus by positively charged silver nanoparticles and functionalized silicone elastomers. Pathogens 9, 784 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Zago, C. E. et al. Dynamics of biofilm formation and the interplay between Candida albicans and methicillin-susceptible (MSSA) and-resistant Staphylococcus aureus (MRSA). PLoS One 10, e0123206 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. J. et al. Interactions between Candida albicans and Staphylococcus aureus inside combined species biofilms. Bios 84, 30–39 (2013).


    Google Scholar
     

  • Tambone, E. et al. Counter-acting Candida albicansStaphylococcus aureus combined biofilm on titanium implants utilizing microbial biosurfactants. Polymers 13, 2420 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkateswarlu, Okay. et al. Three-dimensional imaging and quantification of real-time cytosolic calcium oscillations in microglial cells cultured on electrospun matrices utilizing laser scanning confocal microscopy. Biotechnol. Bioeng. 117, 3108–3123 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Schlafer, S., Kamp, A. & Garcia, J. E. A confocal microscopy based mostly methodology to watch extracellular pH in fungal biofilms. FEMS Yeast Res. 18, foy049 (2018).

    CAS 

    Google Scholar
     

  • von Ohle, C. et al. Actual-time microsensor measurement of native metabolic actions in ex vivo dental biofilms uncovered to sucrose and handled with chlorhexidine. Appl. Environ. Microbiol. 76, 2326–2334 (2010).

    ADS 

    Google Scholar
     

  • Pousti, M., Zarabadi, M. P., Amirdehi, M. A., Paquet-Mercier, F. & Greener, J. Microfluidic bioanalytical circulation cells for biofilm research: A assessment. Analyst 144, 68–86 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Actual-time mapping of a hydrogen peroxide focus profile throughout a polymicrobial bacterial biofilm utilizing scanning electrochemical microscopy. Proc. Natl. Acad. Sci. U.S.A. 108, 2668–2673 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dige, I., Baelum, V., Nyvad, B. & Schlafer, S. Monitoring of extracellular pH in younger dental biofilms grown in vivo within the presence and absence of sucrose. J. Oral Microbiol. 8, 30390 (2016).

    PubMed 

    Google Scholar
     

  • Choong, F. X. et al. A semi high-throughput methodology for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces. Biofilm 3, 100060 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • DelMain, E. A. et al. Stochastic expression of Sae-dependent virulence genes throughout Staphylococcus aureus biofilm improvement depends on SaeS. MBio 11, e03081-03019 (2020).


    Google Scholar
     

  • Quick, B. et al. Investigating the transcriptome of Candida albicans in a dual-species Staphylococcus aureus biofilm mannequin. Entrance. Cell. Infect. Microbiol. 1142 (2021).

  • Lee, J.-H. et al. Inhibition of biofilm formation by Candida albicans and polymicrobial microorganisms by nepodin by way of hyphal-growth suppression. ACS Infect. Dis. 5, 1177–1187 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Forbes, T. P. & Kralj, J. G. Engineering and evaluation of floor interactions in a microfluidic herringbone micromixer. Lab Chip 12, 2634–2637 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Sakamoto, C. et al. Fast quantification of bacterial cells in potable water utilizing a simplified microfluidic machine. J. Microbiol. Strategies 68, 643–647 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Richter, L. et al. Improvement of a microfluidic biochip for on-line monitoring of fungal biofilm dynamics. Lab Chip 7, 1723–1731 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Younger, E. W. & Simmons, C. A. Macro-and microscale fluid circulation methods for endothelial cell biology. Lab Chip 10, 143–160 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Petrochenko, P. E. et al. Analytical issues for measuring the globule measurement distribution of cyclosporine ophthalmic emulsions. Int. J. Pharm. 550, 229–239 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Tinevez, J.-Y. et al. TrackMate: An open and extensible platform for single-particle monitoring. Strategies 115, 80–90 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Tran, V. N. et al. Opto-chemical remedy for enhanced high-level disinfection of mature bacterial biofilm in a Teflon-based endoscope mannequin. Biomed. Choose. Specific 12, 5736–5750 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staffa, S. J. & Zurakowski, D. Methods in adjusting for a number of comparisons: A primer for pediatric surgeons. J. Pediatr. Surg. 55, 1699–1705 (2020).

    PubMed 

    Google Scholar
     

  • Tran, V. N. et al. Collective bacterial disinfection by opto-chemical remedy on mature biofilm in medical endoscope. J. Photochem. Photobiol. B Biol. 226, 112367 (2022).

    CAS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments