Wednesday, August 10, 2022
No menu items!
HomeBiotechnology5-Azacytidine will increase tanshinone manufacturing in Salvia miltiorrhiza furry roots by epigenetic...

5-Azacytidine will increase tanshinone manufacturing in Salvia miltiorrhiza furry roots by epigenetic modulation

[ad_1]

  • Waddington, C. H. The epigenotype. Endeavour 1, 18–20 (1942).


    Google Scholar
     

  • Espinas, N. A., Saze, H. & Saijo, Y. Epigenetic management of protection signaling and priming in vegetation. Entrance. Plant Sci. 7, 1201 (2016).


    Google Scholar
     

  • Mirouze, M. & Paszkowski, J. Epigenetic contribution to emphasize adaptation in vegetation. Curr. Opin. Plant Biol. 14, 267–274 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Legislation, J. A. & Jacobsen, S. E. Establishing, sustaining and modifying DNA methylation patterns in vegetation and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    CAS 

    Google Scholar
     

  • Akhter, Z. et al. In response to abiotic stress, DNA methylation confers epigenetic modifications in vegetation. Vegetation 10, 1096 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Dowen, R. H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. 109, E2183–E2191 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Kong, L., Liu, Y., Wang, X. & Chang, C. Perception into the position of epigenetic processes in abiotic and biotic stress response in wheat and barley. Int. J. Mol. Sci. 21, 1480 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, M. et al. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol. 55, 1354–1365 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Kooyers, N. J. The evolution of drought escape and avoidance in pure herbaceous populations. Plant Sci. 234, 155–162. https://doi.org/10.1016/j.plantsci.2015.02.012 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Colebrook, E. H., Thomas, S. G., Phillips, A. L. & Hedden, P. The position of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 217, 67–75. https://doi.org/10.1242/jeb.089938 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Isah, T. Stress and protection responses in plant secondary metabolites manufacturing. Biol. Res. 52, 39. https://doi.org/10.1186/s40659-019-0246-3 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Erb, M. & Kliebenstein, D. J. Plant secondary metabolites as defenses, regulators, and first metabolites: The blurred purposeful trichotomy. Plant Physiol. 184, 39–52. https://doi.org/10.1104/pp.20.00433 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Sanchez-Muñoz, R. et al. Genomic methylation in plant cell cultures: A barrier to the event of economic long-term biofactories. Eng. Life Sci. 19, 872–879 (2019).

    Article 

    Google Scholar
     

  • Kiselev, Okay. V., Tyunin, A. P. & Karetin, Y. A. Salicylic acid induces alterations within the methylation sample of the VaSTS1, VaSTS2, and VaSTS10 genes in Vitis amurensis Rupr. cell cultures. Plant Cell Rep. 34, 311–320. https://doi.org/10.1007/s00299-014-1708-2 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Pandey, N. & Pandey-Rai, S. Deciphering UV-B-induced variation in DNA methylation sample and its affect on regulation of DBR2 expression in Artemisia annua L. Planta 242, 869–879 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. & Cedar, H. The position of DNA methylation in establishing chromatin construction throughout growth. Nat. Genet. 34, 187–192 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Heberle, E. & Bardet, A. F. Sensitivity of transcription elements to DNA methylation. Essays Biochem. 63, 727–741. https://doi.org/10.1042/EBC20190033 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Meraj, T. A. et al. Transcriptional elements regulate plant stress responses by mediating secondary metabolism. Genes 11, 346 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ding, Okay. et al. SmMYB36, a novel R2R3-MYB transcription issue, enhances tanshinone accumulation and reduces phenolic acid content material in Salvia miltiorrhiza furry roots. Sci. Rep. 7, 5104. https://doi.org/10.1038/s41598-017-04909-w (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, J. et al. Overexpression of SmMYB9b enhances tanshinone focus in Salvia miltiorrhiza furry roots. Plant Cell Rep. 36, 1297–1309. https://doi.org/10.1007/s00299-017-2154-8 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Cao, Y., Li, Okay., Li, Y., Zhao, X. & Wang, L. MYB transcription elements as regulators of secondary metabolism in vegetation. Biology 9, 61 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shen, X.-J. et al. Overexpression of the wild soybean R2R3-MYB transcription issue GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis. Int. J. Mol. Sci. 19, 3958 (2018).

    Article 

    Google Scholar
     

  • Bensaddek, L., Villarreal, M. L. & Fliniaux, M.-A. Induction and development of furry roots for the manufacturing of medicinal compounds. Electron. J. Integr. Biosci. 3, 2–9 (2008).


    Google Scholar
     

  • Chandra, S. & Chandra, R. Engineering secondary metabolite manufacturing in furry roots. Phytochem. Rev. 10, 371 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Kai, G. et al. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza furry root cultures. Metab. Eng. 13, 319–327 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Yang, D. et al. DNA methylation: A brand new regulator of phenolic acids biosynthesis in Salvia miltiorrhiza. Ind. Crops Prod. 124, 402–411 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, C., Yan, Q., Cheuk, W.-Okay. & Wu, J. Enhancement of tanshinone manufacturing in Salvia miltiorrhiza furry root tradition by Ag+ elicitation and nutrient feeding. Planta Med. 70, 147–151 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Shi, M., Huang, F., Deng, C., Wang, Y. & Kai, G. Bioactivities, biosynthesis and biotechnological manufacturing of phenolic acids in Salvia miltiorrhiza. Crit. Rev. Meals Sci. Nutr. 59, 953–964. https://doi.org/10.1080/10408398.2018.1474170 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, J. et al. Biosynthesis, chemistry, and pharmacology of polyphenols from Chinese language Salvia species: A evaluate. Molecules 24, 155. https://doi.org/10.3390/molecules24010155 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Xiao, Y. et al. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza furry root cultures. PLoS One 6, e29713. https://doi.org/10.1371/journal.pone.0029713 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, S. et al. Selective responses of enzymes within the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza furry root cultures. J. Biosci. Bioeng. 117, 645–651. https://doi.org/10.1016/j.jbiosc.2013.10.013 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Ma, P., Liu, J., Zhang, C. & Liang, Z. Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl. Biochem. Biotechnol. 170, 1253–1262. https://doi.org/10.1007/s12010-013-0265-4 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, L.-J. et al. Danshensu has anti-tumor exercise in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion. Eur. J. Pharmacol. 643, 195–201 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, L., Zuo, Z. & Chow, M. S. S. Danshen: An summary of its chemistry, pharmacology, pharmacokinetics, and medical use. J. Clin. Pharmacol. 45, 1345–1359 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Yang, Y. et al. Expression patterns of some genes concerned in tanshinone biosynthesis in Salvia miltiorrhiza roots. Ind. Crops Prod. 130, 606–614. https://doi.org/10.1016/j.indcrop.2019.01.001 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yang, D. et al. Totally different roles of the mevalonate and methylerythritol phosphate pathways in cell development and tanshinone manufacturing of Salvia miltiorrhiza furry roots. PLoS One 7, e46797. https://doi.org/10.1371/journal.pone.0046797 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chang, Y., Wang, M., Li, J. & Lu, S. Transcriptomic evaluation reveals potential genes concerned in tanshinone biosynthesis in Salvia miltiorrhiza. Sci. Rep. 9, 14929. https://doi.org/10.1038/s41598-019-51535-9 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ma, X.-H. et al. The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules 20, 16235–16254 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, Q. et al. RNA interference-mediated repression of SmCPS (copalyldiphosphate synthase) expression in furry roots of Salvia miltiorrhiza causes a lower of tanshinones and sheds gentle on the purposeful position of SmCPS. Biotechnol. Lett. 36, 363–369. https://doi.org/10.1007/s10529-013-1358-4 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Christman, J. Okay. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic research and their implications for most cancers remedy. Oncogene 21, 5483–5495. https://doi.org/10.1038/sj.onc.1205699 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Jones, P. A. Altering gene expression with 5-azacytidine. Cell 40, 485–486 (1985).

    CAS 
    Article 

    Google Scholar
     

  • Čihák, A. Organic results of 5-azacytidine in eukaryotes. Oncology 30, 405–422 (1974).

    Article 

    Google Scholar
     

  • Constantinides, P. G., Jones, P. A. & Gevers, W. Useful striated muscle cells from non-myoblast precursors following 5-azacytidine remedy. Nature 267, 364–366 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Grzybkowska, D., Morończyk, J., Wójcikowska, B. & Gaj, M. D. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes have an effect on embryogenic response and expression of the genes which might be concerned in somatic embryogenesis in Arabidopsis. Plant Development Regul. 85, 243–256 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Issa, J.-P.J. & Kantarjian, H. M. Concentrating on DNA methylation. Clin. Most cancers Res. 15, 3938–3946 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Kondo, H., Ozaki, H., Itoh, Okay., Kato, A. & Takeno, Okay. Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiol. Plant. 127, 130–137 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Arfmann, H.-A., Kohl, W. & Wray, V. Impact of 5-azacytidine on the formation of secondary metabolites in Catharanthus roseus cell suspension cultures. Z. Nat. C 40, 21–25. https://doi.org/10.1515/znc-1985-1-206 (1985).

    Article 

    Google Scholar
     

  • Kiselev, Okay. V., Tyunin, A. P., Manyakhin, A. Y. & Zhuravlev, Y. N. Resveratrol content material and expression patterns of stilbene synthase genes in Vitis amurensis cells handled with 5-azacytidine. Plant Cell Tissue Organ Cult. 105, 65–72. https://doi.org/10.1007/s11240-010-9842-1 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Zeng, F. et al. Triterpenoid content material and expression of triterpenoid biosynthetic genes in birch (Betula platyphylla Suk) handled with 5-azacytidine. J. For. Res. 31, 1843–1850. https://doi.org/10.1007/s11676-019-00966-1 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Szymczyk, P. et al. Isolation and characterization of a copalyl diphosphate synthase gene promoter from Salvia miltiorrhiza. Acta Soc. Bot. Polon. 85 (2016).

  • Chow, C.-N. et al. PlantPAN3.0: A brand new and up to date useful resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in vegetation. Nucleic Acids Res. 47, D1155–D1163 (2019).

    Article 

    Google Scholar
     

  • Dixon, R. A. & Strack, D. Phytochemistry meets genome evaluation, and past. Phytochemistry 62, 815–816. https://doi.org/10.1016/s0031-9422(02)00712-4 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Verpoorte, R. & Memelink, J. Engineering secondary metabolite manufacturing in vegetation. Curr. Opin. Biotechnol. 13, 181–187 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Pandey, N. et al. Epigenetic management of UV-B-induced flavonoid accumulation in Artemisia annua L. Planta 249, 497–514 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kiselev, Okay. V., Tyunin, A. P. & Zhuravlev, Y. N. Involvement of DNA methylation within the regulation of STS10 gene expression in Vitis amurensis. Planta 237, 933–941 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Yan, Q., Shi, M., Ng, J. & Wu, J. Y. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme actions in Salvia miltiorrhiza furry roots. Plant Sci. 170, 853–858 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Cortvrindt, R., Bernheim, J., Buyssens, N. & Roobol, Okay. 5-Azacytidine and 5-aza-2′-deoxycytidine behave as totally different antineoplastic brokers in B16 melanoma. Br. J. Most cancers 56, 261–265 (1987).

    CAS 
    Article 

    Google Scholar
     

  • Qiu, X. et al. Equitoxic doses of 5-azacytidine and 5-aza-2′deoxycytidine induce various instant and overlapping heritable modifications within the transcriptome. PLoS One 5, e12994. https://doi.org/10.1371/journal.pone.0012994 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • McGregor, D. B. et al. TFT and 6TG resistance of mouse lymphoma cells to analogs of azacytidine. Carcinogenesis 10, 2003–2008 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Matousova, M. et al. 2-deoxy-5,6-dihydro-5-azacytidine—A much less poisonous various of two -deoxy-5-azacytidine: A comparative research of hypomethylating potential. Epigenetics 6, 769–776. https://doi.org/10.4161/epi.6.6.16215 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Cosgrove, D. E. & Cox, G. S. Results of sodium butyrate and 5-azacytidine on DNA methylation in human tumor cell strains: Variable response to drug remedy and withdrawal. Biochim. Biophys. Acta 1087, 80–86. https://doi.org/10.1016/0167-4781(90)90124-k (1990).

    CAS 
    Article 

    Google Scholar
     

  • Chen, X. et al. R2R3-MYB transcription issue household in tea plant (Camellia sinensis): Genome-wide characterization, phylogeny, chromosome location, construction and expression patterns. Genomics 113, 1565–1578 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Katiyar, A. et al. Genome-wide classification and expression evaluation of MYB transcription issue households in rice and Arabidopsis. BMC Genomics 13, 1–19 (2012).

    Article 

    Google Scholar
     

  • Deng, C. et al. SmMYB2 promotes salvianolic acid biosynthesis within the medicinal herb Salvia miltiorrhiza. J. Integr. Plant Biol. 62, 1688–1702 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Petroni, Okay. et al. The promiscuous lifetime of plant NUCLEAR FACTOR Y transcription elements. Plant Cell 24, 4777–4792. https://doi.org/10.1105/tpc.112.105734 (2012).

    Article 

    Google Scholar
     

  • Zhao, H. et al. The Arabidopsis thaliana nuclear issue Y transcription elements. Entrance. Plant Sci. 7, 2045. https://doi.org/10.3389/fpls.2016.02045 (2016).

    Article 

    Google Scholar
     

  • Georgiev, M. I., Pavlov, A. I. & Bley, T. Bushy root sort plant in vitro techniques as sources of bioactive substances. Appl. Microbiol. Biotechnol. 74, 1175–1185 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Jin, Y., Liu, F., Huang, W., Solar, Q. & Huang, X. Identification of dependable reference genes for qRT-PCR within the ephemeral plant Arabidopsis pumila based mostly on full-length transcriptome knowledge. Sci. Rep. 9, 8408. https://doi.org/10.1038/s41598-019-44849-1 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hao, X. et al. Results of methyl jasmonate and salicylic acid on tanshinone manufacturing and biosynthetic gene expression in transgenic Salvia miltiorrhiza furry roots. Biotechnol. Appl. Biochem. 62, 24–31. https://doi.org/10.1002/bab.1236 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Tune, Z. & Li, X. Expression profiles of rosmarinic acid biosynthesis genes in two Salvia miltiorrhiza strains with differing water-soluble phenolic contents. Ind. Crops Prod. 71, 24–30. https://doi.org/10.1016/j.indcrop.2015.03.081 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Livak, Okay. J. & Schmittgen, T. D. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two−ΔΔCT methodology. Strategies 25, 402–408 (2001).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments