[ad_1]
Waddington, C. H. The epigenotype. Endeavour 1, 18–20 (1942).
Espinas, N. A., Saze, H. & Saijo, Y. Epigenetic management of protection signaling and priming in vegetation. Entrance. Plant Sci. 7, 1201 (2016).
Mirouze, M. & Paszkowski, J. Epigenetic contribution to emphasize adaptation in vegetation. Curr. Opin. Plant Biol. 14, 267–274 (2011).
Legislation, J. A. & Jacobsen, S. E. Establishing, sustaining and modifying DNA methylation patterns in vegetation and animals. Nat. Rev. Genet. 11, 204–220 (2010).
Akhter, Z. et al. In response to abiotic stress, DNA methylation confers epigenetic modifications in vegetation. Vegetation 10, 1096 (2021).
Dowen, R. H. et al. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. 109, E2183–E2191 (2012).
Kong, L., Liu, Y., Wang, X. & Chang, C. Perception into the position of epigenetic processes in abiotic and biotic stress response in wheat and barley. Int. J. Mol. Sci. 21, 1480 (2020).
Wang, M. et al. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol. 55, 1354–1365 (2014).
Kooyers, N. J. The evolution of drought escape and avoidance in pure herbaceous populations. Plant Sci. 234, 155–162. https://doi.org/10.1016/j.plantsci.2015.02.012 (2015).
Colebrook, E. H., Thomas, S. G., Phillips, A. L. & Hedden, P. The position of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 217, 67–75. https://doi.org/10.1242/jeb.089938 (2014).
Isah, T. Stress and protection responses in plant secondary metabolites manufacturing. Biol. Res. 52, 39. https://doi.org/10.1186/s40659-019-0246-3 (2019).
Erb, M. & Kliebenstein, D. J. Plant secondary metabolites as defenses, regulators, and first metabolites: The blurred purposeful trichotomy. Plant Physiol. 184, 39–52. https://doi.org/10.1104/pp.20.00433 (2020).
Sanchez-Muñoz, R. et al. Genomic methylation in plant cell cultures: A barrier to the event of economic long-term biofactories. Eng. Life Sci. 19, 872–879 (2019).
Kiselev, Okay. V., Tyunin, A. P. & Karetin, Y. A. Salicylic acid induces alterations within the methylation sample of the VaSTS1, VaSTS2, and VaSTS10 genes in Vitis amurensis Rupr. cell cultures. Plant Cell Rep. 34, 311–320. https://doi.org/10.1007/s00299-014-1708-2 (2015).
Pandey, N. & Pandey-Rai, S. Deciphering UV-B-induced variation in DNA methylation sample and its affect on regulation of DBR2 expression in Artemisia annua L. Planta 242, 869–879 (2015).
Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. & Cedar, H. The position of DNA methylation in establishing chromatin construction throughout growth. Nat. Genet. 34, 187–192 (2003).
Heberle, E. & Bardet, A. F. Sensitivity of transcription elements to DNA methylation. Essays Biochem. 63, 727–741. https://doi.org/10.1042/EBC20190033 (2019).
Meraj, T. A. et al. Transcriptional elements regulate plant stress responses by mediating secondary metabolism. Genes 11, 346 (2020).
Ding, Okay. et al. SmMYB36, a novel R2R3-MYB transcription issue, enhances tanshinone accumulation and reduces phenolic acid content material in Salvia miltiorrhiza furry roots. Sci. Rep. 7, 5104. https://doi.org/10.1038/s41598-017-04909-w (2017).
Zhang, J. et al. Overexpression of SmMYB9b enhances tanshinone focus in Salvia miltiorrhiza furry roots. Plant Cell Rep. 36, 1297–1309. https://doi.org/10.1007/s00299-017-2154-8 (2017).
Cao, Y., Li, Okay., Li, Y., Zhao, X. & Wang, L. MYB transcription elements as regulators of secondary metabolism in vegetation. Biology 9, 61 (2020).
Shen, X.-J. et al. Overexpression of the wild soybean R2R3-MYB transcription issue GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis. Int. J. Mol. Sci. 19, 3958 (2018).
Bensaddek, L., Villarreal, M. L. & Fliniaux, M.-A. Induction and development of furry roots for the manufacturing of medicinal compounds. Electron. J. Integr. Biosci. 3, 2–9 (2008).
Chandra, S. & Chandra, R. Engineering secondary metabolite manufacturing in furry roots. Phytochem. Rev. 10, 371 (2011).
Kai, G. et al. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza furry root cultures. Metab. Eng. 13, 319–327 (2011).
Yang, D. et al. DNA methylation: A brand new regulator of phenolic acids biosynthesis in Salvia miltiorrhiza. Ind. Crops Prod. 124, 402–411 (2018).
Zhang, C., Yan, Q., Cheuk, W.-Okay. & Wu, J. Enhancement of tanshinone manufacturing in Salvia miltiorrhiza furry root tradition by Ag+ elicitation and nutrient feeding. Planta Med. 70, 147–151 (2004).
Shi, M., Huang, F., Deng, C., Wang, Y. & Kai, G. Bioactivities, biosynthesis and biotechnological manufacturing of phenolic acids in Salvia miltiorrhiza. Crit. Rev. Meals Sci. Nutr. 59, 953–964. https://doi.org/10.1080/10408398.2018.1474170 (2019).
Wang, J. et al. Biosynthesis, chemistry, and pharmacology of polyphenols from Chinese language Salvia species: A evaluate. Molecules 24, 155. https://doi.org/10.3390/molecules24010155 (2019).
Xiao, Y. et al. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza furry root cultures. PLoS One 6, e29713. https://doi.org/10.1371/journal.pone.0029713 (2011).
Zhang, S. et al. Selective responses of enzymes within the two parallel pathways of rosmarinic acid biosynthetic pathway to elicitors in Salvia miltiorrhiza furry root cultures. J. Biosci. Bioeng. 117, 645–651. https://doi.org/10.1016/j.jbiosc.2013.10.013 (2014).
Ma, P., Liu, J., Zhang, C. & Liang, Z. Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl. Biochem. Biotechnol. 170, 1253–1262. https://doi.org/10.1007/s12010-013-0265-4 (2013).
Zhang, L.-J. et al. Danshensu has anti-tumor exercise in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion. Eur. J. Pharmacol. 643, 195–201 (2010).
Zhou, L., Zuo, Z. & Chow, M. S. S. Danshen: An summary of its chemistry, pharmacology, pharmacokinetics, and medical use. J. Clin. Pharmacol. 45, 1345–1359 (2005).
Yang, Y. et al. Expression patterns of some genes concerned in tanshinone biosynthesis in Salvia miltiorrhiza roots. Ind. Crops Prod. 130, 606–614. https://doi.org/10.1016/j.indcrop.2019.01.001 (2019).
Yang, D. et al. Totally different roles of the mevalonate and methylerythritol phosphate pathways in cell development and tanshinone manufacturing of Salvia miltiorrhiza furry roots. PLoS One 7, e46797. https://doi.org/10.1371/journal.pone.0046797 (2012).
Chang, Y., Wang, M., Li, J. & Lu, S. Transcriptomic evaluation reveals potential genes concerned in tanshinone biosynthesis in Salvia miltiorrhiza. Sci. Rep. 9, 14929. https://doi.org/10.1038/s41598-019-51535-9 (2019).
Ma, X.-H. et al. The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules 20, 16235–16254 (2015).
Cheng, Q. et al. RNA interference-mediated repression of SmCPS (copalyldiphosphate synthase) expression in furry roots of Salvia miltiorrhiza causes a lower of tanshinones and sheds gentle on the purposeful position of SmCPS. Biotechnol. Lett. 36, 363–369. https://doi.org/10.1007/s10529-013-1358-4 (2014).
Christman, J. Okay. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic research and their implications for most cancers remedy. Oncogene 21, 5483–5495. https://doi.org/10.1038/sj.onc.1205699 (2002).
Jones, P. A. Altering gene expression with 5-azacytidine. Cell 40, 485–486 (1985).
Čihák, A. Organic results of 5-azacytidine in eukaryotes. Oncology 30, 405–422 (1974).
Constantinides, P. G., Jones, P. A. & Gevers, W. Useful striated muscle cells from non-myoblast precursors following 5-azacytidine remedy. Nature 267, 364–366 (1977).
Grzybkowska, D., Morończyk, J., Wójcikowska, B. & Gaj, M. D. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes have an effect on embryogenic response and expression of the genes which might be concerned in somatic embryogenesis in Arabidopsis. Plant Development Regul. 85, 243–256 (2018).
Issa, J.-P.J. & Kantarjian, H. M. Concentrating on DNA methylation. Clin. Most cancers Res. 15, 3938–3946 (2009).
Kondo, H., Ozaki, H., Itoh, Okay., Kato, A. & Takeno, Okay. Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiol. Plant. 127, 130–137 (2006).
Arfmann, H.-A., Kohl, W. & Wray, V. Impact of 5-azacytidine on the formation of secondary metabolites in Catharanthus roseus cell suspension cultures. Z. Nat. C 40, 21–25. https://doi.org/10.1515/znc-1985-1-206 (1985).
Kiselev, Okay. V., Tyunin, A. P., Manyakhin, A. Y. & Zhuravlev, Y. N. Resveratrol content material and expression patterns of stilbene synthase genes in Vitis amurensis cells handled with 5-azacytidine. Plant Cell Tissue Organ Cult. 105, 65–72. https://doi.org/10.1007/s11240-010-9842-1 (2010).
Zeng, F. et al. Triterpenoid content material and expression of triterpenoid biosynthetic genes in birch (Betula platyphylla Suk) handled with 5-azacytidine. J. For. Res. 31, 1843–1850. https://doi.org/10.1007/s11676-019-00966-1 (2019).
Szymczyk, P. et al. Isolation and characterization of a copalyl diphosphate synthase gene promoter from Salvia miltiorrhiza. Acta Soc. Bot. Polon. 85 (2016).
Chow, C.-N. et al. PlantPAN3.0: A brand new and up to date useful resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in vegetation. Nucleic Acids Res. 47, D1155–D1163 (2019).
Dixon, R. A. & Strack, D. Phytochemistry meets genome evaluation, and past. Phytochemistry 62, 815–816. https://doi.org/10.1016/s0031-9422(02)00712-4 (2003).
Verpoorte, R. & Memelink, J. Engineering secondary metabolite manufacturing in vegetation. Curr. Opin. Biotechnol. 13, 181–187 (2002).
Pandey, N. et al. Epigenetic management of UV-B-induced flavonoid accumulation in Artemisia annua L. Planta 249, 497–514 (2019).
Kiselev, Okay. V., Tyunin, A. P. & Zhuravlev, Y. N. Involvement of DNA methylation within the regulation of STS10 gene expression in Vitis amurensis. Planta 237, 933–941 (2013).
Yan, Q., Shi, M., Ng, J. & Wu, J. Y. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme actions in Salvia miltiorrhiza furry roots. Plant Sci. 170, 853–858 (2006).
Cortvrindt, R., Bernheim, J., Buyssens, N. & Roobol, Okay. 5-Azacytidine and 5-aza-2′-deoxycytidine behave as totally different antineoplastic brokers in B16 melanoma. Br. J. Most cancers 56, 261–265 (1987).
Qiu, X. et al. Equitoxic doses of 5-azacytidine and 5-aza-2′deoxycytidine induce various instant and overlapping heritable modifications within the transcriptome. PLoS One 5, e12994. https://doi.org/10.1371/journal.pone.0012994 (2010).
McGregor, D. B. et al. TFT and 6TG resistance of mouse lymphoma cells to analogs of azacytidine. Carcinogenesis 10, 2003–2008 (1989).
Matousova, M. et al. 2-deoxy-5,6-dihydro-5-azacytidine—A much less poisonous various of two -deoxy-5-azacytidine: A comparative research of hypomethylating potential. Epigenetics 6, 769–776. https://doi.org/10.4161/epi.6.6.16215 (2011).
Cosgrove, D. E. & Cox, G. S. Results of sodium butyrate and 5-azacytidine on DNA methylation in human tumor cell strains: Variable response to drug remedy and withdrawal. Biochim. Biophys. Acta 1087, 80–86. https://doi.org/10.1016/0167-4781(90)90124-k (1990).
Chen, X. et al. R2R3-MYB transcription issue household in tea plant (Camellia sinensis): Genome-wide characterization, phylogeny, chromosome location, construction and expression patterns. Genomics 113, 1565–1578 (2021).
Katiyar, A. et al. Genome-wide classification and expression evaluation of MYB transcription issue households in rice and Arabidopsis. BMC Genomics 13, 1–19 (2012).
Deng, C. et al. SmMYB2 promotes salvianolic acid biosynthesis within the medicinal herb Salvia miltiorrhiza. J. Integr. Plant Biol. 62, 1688–1702 (2020).
Petroni, Okay. et al. The promiscuous lifetime of plant NUCLEAR FACTOR Y transcription elements. Plant Cell 24, 4777–4792. https://doi.org/10.1105/tpc.112.105734 (2012).
Zhao, H. et al. The Arabidopsis thaliana nuclear issue Y transcription elements. Entrance. Plant Sci. 7, 2045. https://doi.org/10.3389/fpls.2016.02045 (2016).
Georgiev, M. I., Pavlov, A. I. & Bley, T. Bushy root sort plant in vitro techniques as sources of bioactive substances. Appl. Microbiol. Biotechnol. 74, 1175–1185 (2007).
Jin, Y., Liu, F., Huang, W., Solar, Q. & Huang, X. Identification of dependable reference genes for qRT-PCR within the ephemeral plant Arabidopsis pumila based mostly on full-length transcriptome knowledge. Sci. Rep. 9, 8408. https://doi.org/10.1038/s41598-019-44849-1 (2019).
Hao, X. et al. Results of methyl jasmonate and salicylic acid on tanshinone manufacturing and biosynthetic gene expression in transgenic Salvia miltiorrhiza furry roots. Biotechnol. Appl. Biochem. 62, 24–31. https://doi.org/10.1002/bab.1236 (2015).
Tune, Z. & Li, X. Expression profiles of rosmarinic acid biosynthesis genes in two Salvia miltiorrhiza strains with differing water-soluble phenolic contents. Ind. Crops Prod. 71, 24–30. https://doi.org/10.1016/j.indcrop.2015.03.081 (2015).
Livak, Okay. J. & Schmittgen, T. D. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two−ΔΔCT methodology. Strategies 25, 402–408 (2001).
[ad_2]